基于简化模型的北京奥林匹克公园中心演播塔顺风向风振TMD控制研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
研究了TMD对北京奥林匹克公园中心演播塔在强风作用下顺风向风振响应的振动控制效果。基于随机振动理论,利用M.Shinozuka方法对该塔的顺风向脉动风荷载进行了数值模拟,得到了6条顺风向脉动风荷载时程曲线;利用二维模型研究了该塔的三维空间模型,并验证了二维模型的正确性和可靠性,而且利用二维模型进行减振控制研究,大大节省了计算时间;以该塔顶层的顺风向风振加速度响应为优化目标,对TMD的参数进行了优化研究。结果表明,该塔的顺风向风振加速度响应超过了规范的容许值,设置TMD后该塔的顺风向风振加速度响应有明显的减小;在TMD最优参数下,该塔顶层的顺风向风振加速度响应和位移响应的减振率分别为20.2%和42.7%。TMD吸收了大量的能量,对该塔的顺风向风振响应有明显的控制作用。
Here,Beijing Olympic central broadcast tower was taken as a project case to investigate wind-induced vibration control with tuned mass damper(TMD)under fluctuating load along wind direction.First of all,based on the random vibration theory,fluctuating wind load along wind direction of this tower was simulated by means of M.Shinozuka method,and 6 correlated time history curves were obtained.Secondly,the 3D model of the tower was investigated by use of the 2D model,the accuracy and reliability of the 2D model was verified,and the calculation time was extremely saved taking advantage of the 2D model.Finally,the optimal TMD coefficients were obtained considering the wind-induced acceleration response of the upper story along wind direction as optimization objectives.The analysis results showed that the maximum peak acceleration response of the tower along wind direction under dynamic wind load is far beyond the allowable value of the code,the wind-induced responses are decreased greatly with TMD;and with the optimal parameters of TMD,the peak acceleration and displacement wind-responses of the upper story along wind direction are reduced respectively by 20.2% and 42.7%;TMD dissipates a large amount of input energy and plays an important pole in the wind-induced vibration control of the tower along wind direction.
引文
[1]李爱群,编著.工程结构减振控制[M].北京:机械工业出版社,2008,219-278.
    [2]张志强,李爱群,等,合肥电视塔的人造脉动风荷载的仿真计算[J].东南大学学报,2001,31(1):69-73.
    [3]滕军,鲁志雄,等.高耸结构TMD接触非线性阻尼振动控制研究[J].振动与冲击,2009,28(3):90-97.
    [4]Yao J TP.Concept of structural control[J].Journal of Struc-tural Division,1972,98(7):1567-1574.
    [5]张志强,李爱群,等,合肥电视塔结构模型的建立及其动力特性分析[J].建筑结构,2003,33(3):50-53.
    [6]张志强.合肥电视塔风振及地震响应的振动控制研究[D].东南大学土木工程学院,2003.
    [7]Kwok K C S.Full-scale measurement of wind-induced re-sponse of Sydney tower[J].J.of Wind Engineeringand In-dustrial Aerodyamics,1983,(14):307-318.
    [8]Shinozuka M,Deodatis G.Simulation of stochastic process by spectral representation[J].Applied Mechanics Review,1994,44:191-203.
    [9]李爱群,瞿伟廉,等.南京电视塔风振的混合控制研究[J].建筑结构学报,1996,17(3):9-17.
    [10]Constaninou M C,Symans M D.Experimental and analytical investigation of seismic response of structures with supple mental fluid viscous dampers[R].NSEER Rep-92-0032,State Univ of New York at Baffalo,New York,1992.
    [11]叶正强.粘滞流体阻尼器消能减振技术的理论、试验与应用研究[D].南京:东南大学,2003.
    [12]东南大学,香港理工大学和国家广电总局设计院.合肥电视塔风振控制研究报告III,2001.
    [13]叶正强,李爱群,徐幼麟.工程结构粘滞流体阻尼减振新技术及其应用[J].东南大学学报:自然科学版,2002,32(3):466-473.
    [14]张志强,李爱群,贾洪,等.粘滞流体阻尼器对电视塔的风振响应控制[J].东南大学学报:自然科学版,2007,37(6):1018-1022.
    [15]Song T T,Dargush G F.Passive Energy Dissipation System in Structure Engineering[M].New York:John Wiley&Sons,1997.
    [16]Song T T,Spencer B F.Supplemental energy dissipati-on:state-of-the art and state-of-the practice[J].Eng Sruct,2002,24(3):243-259.
    [17]徐刚,王靖夫,等.施工中大桥桥塔的TMD减振研究[J].工程力学,2003,20(6):106-110.
    [18]唐意,顾明.某超高层建筑TMD风振控制分析[J].振动与冲击,2006,25(2):17-19.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心