全球地震面波相速度变化及其大地构造学意义
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
从1980年到1992年间震级M≥6.0天然地震的全球数字地震台网记录,搜集约30000个长周期地震图波形数据,建立了周期为85-250s的全球Love波和Rayleish波相速度变化模型.全部地震图均通过时间域和频率域的质量控制,震相为短大圆弧和长大圆弧基频振型G1,R1,G2和R2.利用将区域高分辨率反演结果嵌入全球模型框架的混合反演参量化方法,以及地形、地貌和地壳厚度模型,得到校正前、后的两种反演结果.与已有全球相速度模型比较,长波分量的幅度和空间图像符合较好.短周期相速度异常反映了地表板块构造,与大陆地盾、大洋中脊和构造活动区相关;板块构造相关性随面波周期增大而逐渐消失;部分海洋热点与100-200s周期的低速异常相联系.
Using about 30000 long period seismic waveforms, which are associated with earthquakes M≥6.0 recorded by global digital seismic networks between 1980 and 1992, global Love and Rayleigh wave phase velocity variations in periods of 85s and 250s are obtained. All of waveforms are visually inspected in time and spectral domains, and the used phases are minor and major great circle phases Gl, R1, G2,and R2. Using the hybrid parameterization, in which final block inversion in higher regional resolution is embed in an aspherical reference model, and considering of the topography and crustal thickness variation, the inversions are performed with and without shallow layer corrections. Comparing with previous global phase velocity models, the l0ng wave length features are consistent both in magnitudes and variation patterns. The short period phase velocity variations are correlated with continental craton, middle cocean ridge, and tectonic activities,The correlation,however,decreases with period increases,And some oceanic hotspots are related to slow velocity anomalies.
引文
[1] Masters, G., Jordan, T. H., Silcer, P. G., Gilbert, F., A spherical earth structure from fundamental spheroidri-mode daa, Nature, 298, 609-613, 1982.
    [2] Woodhouse, J. H., Dziewonski, A. M., Mapping the upper mantle: Three-dimensional medelling of Eaxth structure by inversion of seismic waveforms, J Geophys. Res., 89, 5953-5986, 1984.
    [3] Zhang, Y. -S., Tanimoto, T., High resolution global upper mantle structure: Plate tectonics, J Geophys.Res., 98, 9793-9823, 1993.
    [4] Zhang, Y. -S., Tanimoto T, Global Love wave phase velocity variaton and its sighficance to plate tectonics, Phys. Earth Planet. Int., 66, 160-202, 1991.
    [5] Su, W. -J., Woodward, R. L., Deiewonski, A. M., Degree-12 model of shear velocity heterogineity in the mantle, J Geophys. Res., 99, 6945-6980, 1994
    [6] Durek, J. J., Ritrwoller, M. H., Woodhouse, J. H., Constraining upper mamle anelasticity using surface wave amplitudes, Geophys. J Int., 114, 249-272,1993.
    [7] Romanowicz, B., A global tomography medel of shear attenuaion in the upper mante, J Geophys. Res. 100,12375-12394, 1995.
    [8] Montagner, J. -P., Tanimbto, T., Goble anisotropy in the upper manle inferred from the regiodeahon of phase velocities, J Geophys. Res. 95, 4797-4819, 1990
    [9] Li, X. -D., Romanowicz, B., Comparison of globle waveform inversion with and without considering cross-branch modal coupling, Geophys. J Int., 121, 695-709, 1995.
    [10] Anderson, D. L, Tanimoto, T., Zhang, Y. -S., Plare tectonics and hotspots: the three dimension, Science,256, 1645-1650, 1992
    .[11]Tackley, P. J., Stevenson, G. A., Gatzmaier, G. A., Schubert, G., Effcts of an endothermic phase transition at 670 km deptb in a spherical model of convection in the Earth,s mantle, Nature, 361, 699-704, 1993.
    [12] Forte, A. M., Deiewonski, A. M., Woodward, R. L, A spherical structure of mantle, tectonic plate motions, nonhydrostatic geoid, and topography of the core-mantle boundary, in: LeMouef, J. -L., Smylie, D.E., Herring, T., ed., Dynamics of the Earth's Deep Interior and Earth Rotation Geophys. Monogr. Ser. 72,AGU, Washington D. C., 135-166 1993.
    [13] Hocrnle, K., Zhang, Y. -S., Graham, D., Seismic and giochemical evidence for large-scale manle upwelling beneath the eastern Atlantic, and western and central Europe, Nalure, 374, 34-38, 1995.
    [14l Philipps Morgn, J., Jason Morgnn, W., Zhang, Y. -S., Smith, W., Observational hints for plume-fed,suboceedc asthenosphere and its role in mantle convection, J Geophys. Res., 100,. 12753-12768, 1995.
    [15] Su, W. -J., Woodward, R. L., Dziewonski, A. M., Deep origin of mid-ocean-ridgr seismic velocity anomalies, Nature, 360, 149-152,1992.
    [16] Passier, M. L. M., Snieder, R. K., On the presence of intermediate-scale heterogrneity in the upper mantle, Geophys. J Int., in press, 1995.
    [17] 张禹慎,马石庄, 关于全球地震层析成像反演方法的探讨,地球物理学报,39, 753-763, 1996
    [18] Dziwonski, A. M., Anderson, D. L, Preliminary reference Earth model, Phys. Earth Planet. Int., 25,297-356, 1981.
    [19]Stein, C. A., Stein, S., A model for the global variatin in the oceanic depth and heat flow with lithspheric age, Nature, 360, 149-152, 1992.
    [20] Laske, G., G. Masters, G., Constraints on globa phase velocity maps by longperiod polarizaton data, J Geophys. Res., submitted. 1995.
    [21] Mooney, W D., Gobal crustal structure, EOS Trans. AGU, 75, 371, 1994
    [22] Hu, G, Menke, W., Formal inversion of laterally heterogrneous velocity structuer from P-wave polarzation data, Geophys. J Int., 110, 63-69, 1992.
    [23] Laske, G., Masters, G., Zurn, W.. Frequency-dependent polarization measorements of long-period surface waves and their implication for globle velocity maps. Phys. Earth Planet. Int. 84, 111-137, 1994.
    [24] Zhan, Y. -S., Tanimoto, T., Ridges, hotspots and its interastion as observed in seismic velocity maps,Nature, 355, 45-49, 1992.
    [25]Wong, Y. -K., Upper mantle heterogeneity from phase and amplitude data of mantle waves, Ph. D. thesis,Harvard University, Cambridge. Mass., 1989.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心