用于流动液化变形分析的临界状态砂土模型
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
介绍一个用于流动液化变形分析的临界状态砂土模型.该模型的参量与应力和材料状态无关,模型能自动处理材料因过程发展而产生的各种状态变化.对于一种或几种类似的土,参量一经率定,不论材料初始处在松的可液化状态还是紧的剪胀状态,模型以统一方式模拟材料从起始阶段近似弹性的响应直到趋于临界状态破坏,包括流动液化在内的全程响应,无需在分析过程中人为干预调整模型参量.作者利用完全耦合有限元分析程序SUMDES2D,以Upper San Fernando土坝在1971年地震中的分析为例,示范该模型在流动液化变形分析中的应用.
A framework for unified modeling of sand behavior is described. In this modeling framework, model con-stants are considered as intrinsic soil properties, independent on stress state and material state. A single set of model constants, once calibrated, automatically takes care of a wide range of ' on-process' state variation. As a result, for a given soil or similar soils, either in a very loose liquefiable state or in a dense dilative state, the responses from essentially elastic response at the beginning up to critical state failure, including flow liquefaction response, are modeled in a unified manner, without intervention from users through adjusting model constants. The case history of the upper San Fernando dam during the 1971 earthquake is used as an example of numerical analysis using such a model and the fully coupled analysis procedure SUMDES2D.
引文
[1]Li X S,Dafalias Y F.无粘性土的剪胀性[J].岩土技 术,2000,50(4):449-460(英文版).
    [2]Biot M A.三维固结理论[J].应用物理学报,1941, 12:155-164(英文版).
    [3]Been K,Jefferies M G.砂土的状态参数[J].岩土技 术,1985,35(2):99-112(英文版).
    [4]Ishihara K,Tatsuoka F,Yasuda S.在反复应力作用下砂 土的不排水变形和液化[J].土壤与基础,1975,15 (1):29-44(英文版).
    [5]Rowe P W.一组接触颗粒在静力平衡条件下的应力剪 胀性关系[C].英国皇家科学院论文集,1962,A269: 500-527(英文版).
    [6]Roscoe K H,Schofield A N.理想'湿'粘性土的力学 性质[C].欧洲土力学和基础工程会议论文集,德国 韦斯巴登:1963,1:47-54(英文版).
    [7]Roscoe K H,Burland J B.'湿'粘性土的一般应力-应 变关系[A].工程塑性,剑桥:英国剑桥大学出版社, 1968:535-609(英文版).
    [8]Jefferies M G.NorSand:一个简单的临界状态砂土模型 [J].岩土技术,1993,43(1):91-103(英文版).
    [9]Wood M D,Belkheir K,Liu D F.砂土本构模型中的应变软化和状态参数[J].岩土技术,1994,44(2): 335-339(英文版).
    [10]Manzari M T,Dafalias Y F.双屈服面临界状态砂土塑 性模型[J].岩土技术,1997,47(2):255-272(英 文版).
    [11]Wang Z L,Dafalias Y F,Shen C K.投影面超塑性砂土 模型[J].美国土木工程师学会工程力学学报,1990, 116(5):983-1001(英文版).
    [12]Dafalias Y F.各项异性临界状态塑性模型[J].美国 力学研究通讯,1986,13(6):341-347(英文版).
    [13]Dafalias Y F.投影面塑性力学(一):数学基础和超 塑性[J].美国土木工程师学会工程力学学报,1986, 112(12):1263-1291(英文版).
    [14]Li X S.与状态相关的剪胀性砂土模型[J].岩土技 术,2002,52(3):173-186(英文版).
    [15]Ming H Y,Li X S.SUMDES2D:二维完全耦合岩土地 震分析程序[R],香港:香港科技大学,2001(英文 版).
    [16]Hilbert H M,Hughes T J R,Taylor R L.用于结构力学 的改进时间积分算法[J].地震工程和结构动力学, 1977,5(3):283-292(英文版).
    [17]明海燕,李相崧.Lower San Femando土坝破坏及加固 的完全耦合分析[J].岩土工程学报,2002,129(3): 294-300.
    [18]Seed H B,Lee K L,Idriss I M,等.1971年2月9日地 震中圣费南多土坝滑坡分析(编号:EERC 73-2) [R].伯克里:美国加州大学,1973(英文版).
    [19]Wu G.1971年圣费南多地震中上圣费南多土坝变形 分析[J].加拿大岩土技术学报,2001,28:1-15(英 文版).
    [1] Li X S, Dafalias Y F. Dilatancy for cohesiveless soils [J]. Geotechnique, 2000, 50(4) : 449-460.
    [2] Biot M A. General theory of three dimensional consolidation [J]. Journal of Applied Physics, 1941, 12: 155-164.
    [3] Been K, Jefferies M G. A state parameter for sands [J]. Geotechnique, 1985, 35(2): 99-112.
    [4] Ishihara K, Tatsuoka F, Yasuda S. Undrained deformation and liquefaction of sand under cyclic stresses [J]. Soils and Foundations, 1975, 15(1): 29-44.
    [5] Rowe P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact [C]. Proceedings of Royal Society, 1962, A269: 500-527.
    [6] Roscoe K H, Schofield A N. Mechanical behaviour of an idealized ' wet' clay [C]. Proceedings of European Conference on Soil Mechanics and Foundation Engineering, Wiesbaden: 1963, 1: 47-54.
    [7] Roscoe K H, Burland J B. On the generalized stress-strain behaviour of 'wet' clay [A]. Engineering Plasticity, Cambridge: Cambridge University Press, 1968: 535-609.
    [8] Jefferies M G. NorSand: A simple critical state model of sand [J]. Geotechnique, 1993, 43(1): 91-103.
    [9] Wood M D, Belkheir K, Liu D F. Strain softening and state parameter for sand modeling [J]. Geotechnique, 1994, 44 (2): 335-339.
    [10] Manzari M T, Dafalias Y F. A critical state two-surface plasticity model for sands [J]. Geotechnique, 1997 , 47 (2): 255-272.
    [11] Wang Z L, Dafalias Y F, Shen C K. Bounding surface hy-poplasticity model for sand [J]. Journal of Engineering mechanics, ASCE, 1990, 116(5): 983-1001.
    [12] Dafalias Y F. An anisotropic critical state soil plasticity model [J]. Mechanics Research Communications, 1986, 13(6): 341-347.
    [13] Dafalias Y F. Bounding surface plasticity, I: Mathematical foundation and hypoplasticity [J]. Journal of Engineering Mechanics, ASCE, 1986, 112(12): 1263-1291.
    [14] Li X S. A sand model with state-dependent [J]. Geotechnique, 2002, 52(3): 173-186.
    [15] Ming H Y, Li X S. SUMDES2D, A two dimensional fully-coupled geotechnical earthquake analysis program [R]. Hong Kong: Hong Kong University of Science and Technology, 2001.
    [16] Hilbert H M, Hughes T J R, Taylor R L. Improved numerical dissipation for time integration algorithms in structural mechanics [J]. Earthquake Engineering and Structural Dynamics, 1977, 5(3): 283-292.
    [17] MING Hai-yan and LI Xiang-song. Fully coupled analysis of failure and remediation of lower San Fernando dam [J]. Chinese Journal of Georechnical Engineering, 2002, 129(3): 294-300 (in Chinese).
    [18] Seed H B, Lee K L, Idriss I M, et al. Analysis of the slides in the San Fernando dams during the earthquake of February 9, 1971 (Report no. EERC 73-2) [R]. Berkeley: University of California, 1973.
    [19] Wu G. Earthquake-induced deformation analyses of the Upper San Fernando Dam under the 1971 San Fernando earthquake [J]. Canadian Geotechnical Journal, 2001, 28: 1-15.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心