罕遇地震作用下高墩连续刚构桥双重非线性抗震分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
基于Harichandran-Vanmarcke相干函数模型和改进的Kanai-Tajimi过滤白噪声自谱模型,以及Amin-Ang非平稳化函数模型,采用MATLAB语言程序,引入快速傅里叶变换(FFT)算法,编制了基于Geodatis改进型谱表示法的考虑地震动空间变异性的非平稳人工加速度时程。分别采用线性加速度积分法和FFT变换频域积分法将加速度时程转化为位移时程作为地震动激励。运用双线性恢复力模型,引入ANSYS中的COMBIN40单元来模拟双肢薄壁墩墩顶、墩底塑性铰截面的材料非线性关系,同时,考虑桥墩大位移而导致的几何非线性,建立桥梁结构双重非线性有限元模型,得出高墩连续刚构桥在罕遇地震作用下的非线性受力特性和塑性铰截面的延性特性。其分析方法和结果对同类桥梁结构在罕遇地震动激励下的抗震设计与研究具有一定的参考价值。
Based on Harichandran-Vanmarcke coherence function model,modified Kanai-Tajimi filtered white noise power spectrum model and Amin-Ang non-stationary function model,the Fast Fourier Transform(FFT) algorithm are adopted to compile the non-stationary Artificial acceleration time history with the spatial variation of seismic ground motions which is based on Geodatis-innovated spectral representation method by using program of MATLAB. A linear acceleration integral method and the FFT frequency-domain integral method are applied to transform acceleration time history to displacement time history respectively,which will be the ground motion excitations on the bridge structure. Importing the bilinear restoring force models,and using the Combin40 element in program ANSYS to simulate the nonlinear property of materials on plastic hinge sections in the pier top and pier bottom,simultaneously taking the geometrical nonlinearity due to large displacement of piers into account,the double nonlinear Finite Element Method model of the bridge has been set up,and the nonlinearity and ductility of the plastic hinge sections of the high-rise rigid frame bridges under rear earthquake has beenobtained. The approach and achievement represented in this paper have some certain significance as a reference for the rear earthquake-resistant design and research for other similar bridges.
引文
[1]王波,张海龙,武修雄.基于大质量法的高墩大跨连续刚构桥地震时程反应分析[J].桥梁建设,2006,189(5):17―20.Wang Bo,Zhang Hailong,Wu Xiuxiong.Analysis of seismic time-history response of high-rise pier and long span continuous rigid-frame bridge based on great mass method[J].Bridge Construction,2006,189(5):17―20.(in Chinese)
    [2]白国良,朱丽华.基于现行抗震规范的Kanai-Tajimi模型参数研究[J].世界地震工程,2004,20(3):114―118.Bai Guoliang,Zhu Lihua.Study on the parameters of Kanai-Tajimi model based on the code[J].World Information on Earthquake Engineering,2004,20(3):114―118.(in Chinese)
    [3]George Deodatis.Simulation of ergodic multivariate stochastic process[J].Journal of Engineering Mechanics,1996,122(8):778―787.
    [4]Clough R,Penzien J.Dynamics of structures[M].New York:McGraw Hill,1975.
    [5]王济,胡晓.MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,2006.Wang Ji,Hu Xiao.Application in vibration signal processing with MATLAB[M].Beijing:China Water Publication,2006.(in Chinese)
    [6]吕西林,金国芳,吴晓涵.钢筋混凝土非线性有限元理论与应用[M].上海:同济大学出版社,1997.Lu Xilin,Jin Guofang,Wu Xiaohan.Theory and application of nonlinear finite element analysis for reinforced concrete structures[M].Shanghai:Tongji University Press,1997.(in Chinese)
    [7]欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定[J].地震工程与工程震动,1991,11(3):45―53.Ou Jinping,Niu Ditao,Du Xiuli.Random earthquake ground motion model and its parameter determination used in aseismic design[J].Earthquake Engineering and Engineering Vibration,1991,11(3):45―53.(in Chinese)
    [8]Harichandran R S,Vanmarcke E H.Stochastic variation of earthquake ground motion in space and time[J].Journal of Engineering Mechanics,1986,112(2):154―174.
    [9]龚思礼.建筑抗震设计手册[M].北京:中国建筑工业出社,2002.Gong Sili.Building aseismic design manual[M].Beijing:Chinese Construction Industry Press,2002.(in Chinese)
    [10]Mander J B,Priestley M J N,Park R.Theoretical stress-strain model for confined concrete[J].Journal of Structural Engineering,1988,114(8):1804―1826.
    [11]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001.Fan Lichu,Zhuo Weidong.Seismic design for ductility of bridge[M].Beijing:The People Traffic Press,2001.(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心