青藏铁路唐古拉山—拉萨段全新世控震断裂研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
地表调查表明,沿青藏铁路唐古拉山—拉萨段存在5条重要的全新世控震断裂带,从北到南分别是温泉盆地西缘断裂带、安多盆地北缘断裂带、崩错断裂带、谷露西缘断裂带和当雄-羊八井断裂带。构造-地貌和年代学分析结果表明,北部的温泉盆地西缘断裂和安多盆地北缘断裂带的活动强度相对比较小,平均垂直活动速率约为0.2~0.5mm/a。南侧的谷露西缘断裂带和当雄-羊八井断裂带的全新世垂直活动速率为约(1.5±0.5)mm/a。而中部的崩错走滑断裂带的活动强度最大,晚第四纪期间的走滑速率可达(11±4.5)mm/a。全新世断裂活动和古地震研究表明,其中温泉盆地西缘断裂带、安多盆地北缘断裂带、崩错断裂带的西北分支、当雄-羊八井断裂带的当雄段等区域未来发生强震的概率相对更大。
Surface investigation shows that there are five major Holocene seismogenic fault zones along the Tanggula-Lhasa section of the Qinghai-Tibet Railway in the central Tibetan Plateau; from north to south they are the western Wenquan basin marginal fault zone, northern Amdo basin marginal fault zone, Bong Co fault zone, western Golug basin marginal fault zone and Damxung-Yangbajain fault zone. The tectono-geomorphological and chronological analyses indicate that: the western Wenquan marginal fault and northern Amdo basin marginal fault zone in the north are less active, with an average rate of vertical movement of 0.2-0.5 mm/a; the rates of Holocene vertical movements of the western Golug basin marginal fault zone and Damxung-Yangbajain fault zone on the south were ~1.5±0.5 mm/a; and the Bong Co strike-slip fault zone in the central part was most active with an average strike-slip rate of 11±4.5 mm/a during the Late Quaternary. The average vertical slip rate is 1~2mm/a along the normal fault. Based on paleo-seismic evidences, Three paleo-earthquakes (Ms.7 to 8) occurred in approximately 7.4±0.7 ka BP, 4.5±0.3 ka BP and 2.3±0.2 ka BP are identified, and suggest the recurrence interval of Ms.7~8 earthquake is 2300±700a since 8ka BP and at least 1700±200a since 5ka BP along north-margin fault zone of Damxung-Yangbajain basin. There is a higher probability of occurrence of strong earthquakes in the future in the western Wenquan basin marginal fault zone, northern Amdo basin marginal fault zone, northwestern branch of the Bong Co fault zone and Damxung segment of the Damxung-Yangbajain fault zone.
引文
[1]Molnar P,Tapponnier P.Active tectonics of Tibet[J].Journal of Geophysical Research,1978,83:5361-5375.
    [2]Ni J,York J E.Late Cenozoic tectonics of the Tibetan plateau[J].Journal of Geophysical Research,1978,83(B11):5377-5384.
    [3]Rothery D A,Drury S A.The neotectonics of the Tibetan Plateau[J].Tectonics,1984,3(1):19-26.
    [4]Tapponnier P,Peltzer G,Armijo R.On the mechanics of the collision between India and Asia[A].In:Coward M P,Ries A C eds.Collision Tectonics[C].Geological Society Special Publi-cation,1986,19:115-157.
    [5]Armijo R,Tapponnier P,Mercier L,et al.Quaternary extension in southern Tibet:Field observation and tectonic implication[J].Journal of Geophysical Research,1986,91(B14):13803-13872.
    [6]Wu Zhenhan,Barosh P J,Hu Daogong,et al.Hazards posed by active major faults along the Golmud-Lhasa railway route,Tibetan Plateau,China[J].Engineering Geology,2004,74(2004):163-182.
    [7]吴珍汉,胡道功,吴中海,等.青藏铁路沿线的的地裂缝及工程影响[J].现代地质,2005,19(2):165-175.
    [8]徐锡伟,陈文彬,于贵华,等.2001年11月14日昆仑山库塞湖地震(Ms8.1)地表破裂带的基本特征[J].地震地质,2002,24(1):1-13.
    [9]吴中海,胡道功,吴珍汉.青藏铁路邻侧昆仑山2001年Ms8.1级地震地表破裂特征分析[J].地球学报,2004,25(4):411-414.
    [10]吴章明,汪一鹏,任金卫,等.西藏中部活动断裂[A].见:《活动断裂研究》编委会.活动断裂研究(3)[C].北京:北京地震出版社,1992.56-73.
    [11]西藏自治区科学技术委员会.西藏察隅当雄大地震考察[M].拉萨:西藏人民出版社,1988.
    [12]Wu Zhonghai,Zhao Xitao,Wu Zhenhan,et al.Quaternary geology and faulting in the Damxung-Yangbajain basin[J].Acta Geologica Sinica,2004,78(1):273-282.
    [13]吴中海,叶培盛,刘琦胜,等.青藏高原中部温泉盆地西缘的晚新生代正断层作用[J].地震地质,2004,26(4):658-675.
    [14]吴中海,吴珍汉,胡道功,等.青藏高原中部温泉盆地西侧晚第四纪正断层作用的地貌标志及断裂活动速率[J].地质通报,2005,24(1):48-57.
    [15]吴中海,赵希涛,吴珍汉,等.西藏安多-错那湖地堑的第四纪地质、断裂活动及其运动学特征分析[J].第四纪研究,2005,25(4):490-502.
    [16]沈永平,徐道明.西藏安多的湖泊变化与环境[J].冰川冻土,1994,16(2):173-180.
    [17]汪一鹏,任金卫,叶建青,等.怒江缝合带上活动断裂新知[J].地震地质,1995,17(1):52-53.
    [18]Armijo R,Tapponnier P,Han T.Late Cenozoic right-lateral strike-slip faulting in southern Tibet[J].Journal of Geophysical Research,1989,94:2787-2838.
    [19]陈志明.青藏高原湖泊退缩及其气候意义[J].海洋与湖沼,1986,17(3):207-216.
    [20]吴中海,赵希涛.崩错活动断裂带[A].见:吴珍汉,胡道功,吴中海等.青藏高原中段活动断裂及诱发地质灾害[C].北京:地质出版社,2005.238-250.
    [21]赵希涛,朱大岗,吴中海,等.西藏纳木错晚更新世以来的湖泊发育[J].地球学报,2002,23(4):329-334.
    [22]赵希涛,朱大岗,严富华,等.西藏纳木错末次冰期以来的气候变迁与湖面变化[J].第四纪研究,2003,23(1):41-52.
    [23]吴中海,赵希涛,吴珍汉,等.西藏纳木错地区约120kaBP以来的古植被、古气候与湖面波动[J].地质学报,2004,78(2):242-252.
    [24]焦克勤,姚檀栋,李世杰.西昆仑山32ka来的冰川与环境演变[J].冰川冻土,2000,22(3):250-256.
    [25]郑本兴.中国西部末次冰期以来冰川环境及其变化[J].第四纪研究,1990,10(2):101-110.
    [26]吴中海,赵希涛,朱大岗,等.念青唐古拉山脉西部冰川区的冰碛层[J].地球学报,2002,23(4):329-334.
    [27]吴中海,赵希涛.谷露-桑雄盆地西边界活动断裂系[A].见:吴珍汉,胡道功,吴中海等.青藏高原中段活动断裂及诱发地质灾害[C].北京:地质出版社,2005.145-161.
    [28]姚檀栋,Thompson L G,施雅风,等.古里雅冰芯中末次间冰期以来气候变化记录研究[J].中国科学,1997,27(5):447-452.
    [29]施雅风.中国第四纪冰期划分改进建议[J].冰川冻土,2002,24(6):687-692.
    [30]吴中海,赵希涛.当雄-羊八井活动断裂系[A].见:吴珍汉,胡道功,吴中海等.青藏高原中段活动断裂及诱发地质灾害[C].北京:地质出版社,2005.162-187.
    [31]吴中海,赵希涛,江万,等.念青唐古拉山东南麓更新世冰川沉积物年龄测定的初步结果[J].冰川冻土,2003,25(3):272-274.
    [32]Blisniuk P M,Sharp W D.Rates of late Quaternary normal faulting in central Tibet from U-series dating of pedogenic car-bonate in displaced fluvial gravel deposits[J].Earth and Planetary Science Letters,2003,215:169-186.
    [33]Van der Woerd J,Ryerson F J,Tapponnier P,et al.Uniform slip-rate along the Kunlun fault:implications for seismic be-haviour and large-scale tectonics[J].Geophysical Research Let-ters,2000,27(16):2353-2356.
    [34]Chevalier M L,Ryerson F J,Tapponnier P,et al.Slip-rate measurements on the Karakorum fault may imply secular varia-tions in fault motion[J].Science,2005,307:411-414.
    [35]Kidd W S F,Molnar P.Quaternary and active faulting ob-served on the1985Academia Sinica-Royal society geotraverse of Tibet[C].Royal Society of London Philosophical Transac-tions,ser.A,1988,327:337-363.
    [36]Molnar P,Lyou-caen H.Fault plane solutions of earthquakes and active tectonics of the northern and eastern parts of the Tibetan plateau[J].Geophysical Journal International,1989,99:123-153.
    [37]汪一鹏.青藏高原活动构造基本特征[A].见:《活动断裂研究》编委会.活动断裂研究(6)[C].北京:北京地震出版社,1998.135-144.
    [38]邓起东,张培震,冉勇康,等.中国活动构造与地震活动[J].地学前缘,2003,10(特刊):66-73.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心