框架结构整体抗震加固试验
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
目的验证一种新的单一结构体系整体抗震加固方法的可行性.方法通过对一榀框架和采用方钢管混凝土柱加固的双榀框架在水平低周反复荷载作用下的拟静力试验的对比,分析其抗侧承载力、刚度并判断两个框架的抗震能力,与理论值进行比较.结果试件滞回曲线表明,当达到极限荷载后,还能承受数次往复作用,特别是增设剪切型抗侧力单元的加固试件,其骨架曲线的平行段较长,表现了较强的耗能能力,充分体现了方钢管混凝土柱作为加固单元的优点.当加固后构件的抗侧刚度是原来刚度的2.1倍时,提高了框架结构的抗震能力,可以满足抗震设防烈度由7°提高到7.5°的抗震设防要求.结论对于因设防烈度提高而不满足抗震承载力要求的框架结构增设剪切型抗侧力单元,增加其抗侧刚度,有较强的耗能能力,提高了框架结构的抗震承载力.
In order to verify the feasibility of a anti-seismic reinforcement method to the building with single system.Through a framework and another reinforced concrete framework with the CFRT columns reinforced which in the horizontal cyclic loading under pseudo-static experiment of the comparison,the research analyzed its resist lateral bearing capacity,stiffness and judge the seismic resistance of two frameworks,compared with the theoretical value.Specimen hysteresis curve shows when the ultimate load has reached,and could withstand several times cycle loading,especially the specimen with the additional frame-shear side of the power unit reinforcement,longer parallel section of the curve skeleton,stronger performance of the energy dissipation capacity,reflectsing the CFRT reinforced concrete columns of the advantages as unit.When the lateral stiffness of the reinforced specimen is 2.1 times the original stiffness,it increased the seismic capacity of the frame structure to meet seismic fortification intensity by 7 ° to 7.5 ° of the requirements for seismic resistance.Because the increase of fortification intensity then could not meet the seismic bearing capacity of framework added frame-shear side of the power unit,increasing its lateral stiffness,there is a strong energy dissipation capacity,which improves the framework of the seismic bearing capacity.
引文
[1]Elhassan,Rami M.Hart,Gary C.Analysis and seis-mic strengthening of concrete structures[J].Structur-al Design of Tall Buildings,1995,4(1):71-90.
    [2]Dritsos,Stephanos E.Seismic strengthening of col-umns by adding new concrete[J].Bulletin of theNew Zealand Society for Earthquake Engineering,2007,40(2):49-68.
    [3]中华人民共和国建设部.GB50223-2008建筑工程抗震设防分类标准[S].北京:中国建筑工业出版社,2008.(Ministry of Construction of the People's Republicof China.GB50223-2008 Standard for classificationof seismic protection of building constructions[S].Beijing:China Architecture&Building Press,2008.)
    [4]中华人民共和国建设部.GB50011-2008建筑抗震设计规范[S].北京:中国建筑工业出版社,2008.(Ministry of Construction of the People's Republicof China.GB50011-2008 Code for seismic design ofbuildings[S].Beijing:China Architecture&BuildingPress,2008.)
    [5]中华人民共和国建设部.JGJ101-96建筑抗震试验方法规程[S].北京:中国建筑工业出版社,1997.(Ministry of Construction of the People's Republicof China.JGJ101-96 Specificating of testing methodsfor earthquake resistant building[S].Beijing:ChinaArchitecture&Building Press,1997.)
    [6]Wang M L,Shah S P.Reinforced concrete hysteresismodel based on the damage concept[J].EarthquakeEngineering and Structural Dynamics,1987,15(8):993-1003.
    [7]孟俊义.钢筋混凝土框架滞回曲线的计算模型[J].建筑科学,1991(3):28-33.(Meng Junyi.Analytical modelings of hysteretic be-havior of R/C frames[J].Building Science,1991(3):28-33.)
    [8]韩林海.钢管混凝土结构-理论与实践[M].北京:科学出版社,2007.(Han Linhai.Concrete filled steel tubular structures-theory and practice[M].Beijing:Science Press,2007.)
    [9]Tao Zhong,Han Linhai,Zhao Xiaoling.Behaviors ofconcrete filled square steel tubes subjected to axialcompression[C]//Procedure of the 5th InternationalConference on Structural Young Experts,Shenyang:[s.n.],1998.
    [10]Kenji Sakino,Hiroyuki Nakahara,Shosuke Morino.Behavior of centrally loaded concrete filled steel tubeshort columns[J].Journal of Structural Engineering,2004,130(2):180-188.
    [11]Peter H Emmons,Alexander M Vaysburd,Jay Thom-as.Reinforced concrete structures[J].Concrete Inter-national,1998,20(3):53-60.
    [12]Stafford Smith B,Coull A.Tall building structures:analysis and design[M].New York:Wiley,1991.
    [13]Coseza E,Manfredi G,Ramasco R.The use of dam-age functionals in earthquake engineering:A compa-rision between different methods[J].Earthquake En-gineering and Structural Dynamics,1993,22:855-868.
    [14]吴波,李慧,李玉华.结构损伤分析的力学方法[J].地震工程与工程振动,1997,17(1):15-23.(Wu Bo,Li Hui,Li Yuhua.The mechanic methodfor damage analysis of structures[J].Earthquake En-gineering and Engineering Vibration,1997,17(1):15-23.)
    [15]Paulay T.Displacement-based design approach toearthquake induced torsion in ductile buildings[J].Engineering structures,1997,19(9):699-707.
    [16]Helmut Krawinkler.Pros and cons of a push-over a-nalysis of seismic performance evaluation[J].Engi-neering Structures,1998,20:452-464.
    [17]朱洁江,吕西林.钢筋混凝土框架-剪力墙结构推覆分析[J].地震工程与工程振动,2003,23(4):56-63.(Zhu Jiejiang,Lv Xilin.Reinforced concrete frame-shearwall structure nappe analysis[J].EarthquakeEngineering and Engineering Vibration,2003,23(4):56-63.)
    [18]欧进萍,何政,吴斌,等.钢筋混凝土结构基于地震损伤性能的设计[J].地震工程与工程振动,1999,19(1):21-30.(Ou Jinping,He Zheng,Wu Bin,et al.Seismic dam-age performance-based design of reinforced concretestructures[J].Earthquake Engineering and Engineer-ing Vibration,1999,19(1):21-30.)
    [19]李宏男,何浩翔.利用能力谱法对结构地震损伤评估简化方法[J].大连理工大学学报,2004,44(2):267-270.(Li Hongnan,He Haoxiang.A simplified approachfor seismic damage assessment based on capacityspectrum method[J].Journal of Dalian University ofTechnology,2004,44(2):267-270.)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心