按刚性地基结构设计AMD控制器控制SSI体系的适用性
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
本文首先分析了基于刚性地基结构体系设计的AMD控制器控制SSI体系地震反应的基本原理和方法。然后,采用LQR方法通过仿真分析对基于刚性地基结构体系设计的AMD控制器控制SSI体系的适用性进行了研究,结果表明当SSI体系的基频与刚性地基结构体系的基频比ωs/ωr大于0.9时控制效率基本和考虑SSI效应控制器的控制效果接近,当ωs/ωr值小于0.4的时候,控制效率降低比较严重,对SSI体系不能起到控制作用。接着,对4种控制器及三种土体条件SSI体系进行了AMD主动控制的振动台模型试验,试验结果表明当土体相对较硬时基于刚性地基结构体系设计的AMD控制器可以控制SSI体系的反应,但土体相对较软时这种AMD控制器不能控制SSI体系的反应,甚至放大结构的反应。最后,设计和完成了上部两层框架SSI体系地震反应AMD控制的小型振动台试验,试验结果进一步验证了仿真分析的结论。
The fundamental principle and method of AMD controller based on the fixed-base structure to control SSI system is interpreted firstly.Then the applicability of AMD controller based on fixed-base structure to control SSI system is studied by simulation analysis using LQR algorithm.The results show that the AMD controller designed for the fixed-base structure can control SSI system effectively,when the ratio of the frequencies of the SSI system to the fixed-base structure ωs/ωr is lager than 0.9.However,when ωs/ωr is smaller than 0.4,this kind of controller is not suitable to control SSI system.Thirdly,the shaking table tests about AMD control SSI system built on three kinds of soils are carried out using four kinds of AMD controllers.The test results indicate that when the soil foundation is stiff enough,the controllers work very effectively,but when the soil foundation is soft,the controllers can not control the response of SSI system,even cause larger deformation and acceleration of the structure.Finally,the shaking-table test for AMD control of an SSI system with two-floor frame is designed and made,the test results further confirm the conclusions of the simulation analysis.
引文
[1]Battaini M,Yang G,Spence Jr B F.Bench-scale experiment for structural control[J].Journal of Engineering Mechanics,ASCE,2000,126(2):140-148.
    [2]Housner G W,Bergman L A,et al.Structural control:past,present,and future[J].J.Engng.Mech,ASCE,1997,123(9):897-971.
    [3]Scruggs J T,Iwan W D.Control of a civil structure using an electric machine with semi active capability[J].Journal of Structural Engineering,ASCE,2003,129(7):951-959.
    [4]Soong TT.Active structure control theory and practice[M].New York:Longman Scientific&Technical,1990.
    [5]Spencer Jr B F,Nagarajaiah S.State of the art of structural control[J].Journal of Structural Engineering,ASCE,2003,129(7):845-856.
    [6]Watakabe M,Tohdo M,Chiba O,et al.Response control performance of a hybrid mass damper applied to a tall building[J].Earthquake Engi-neering&Structural Dynamics,2001,30(11):1655-1676.
    [7]Yang G,Spencer Jr B F,Carlson J D,et al.Large?scale MR fluid dampers:modeling and dynamic performance considerations[J].Engineer-ing Structures,2002,24(3):309-323.
    [8]Yao J TP.Concept of structure control[J].Journal of Structure Division,ASCE,1972,98(ST7):1567-1574.
    [9]Zhang C W,Ou J P.Characteristics of active forces in structural hybrid mass damper control systems[C]//2004 ANCER Annual Meeting Net-working of Young Earthquake Engineering Researchers and Professionals.Honolulu,Hawaii:2004.
    [10]欧进萍,张春巍,李惠,等.大连市某高层建筑风振和地震反应的主动质量阻尼(AMD)控制分析与设计[J].建筑结构学报,2004,25(2):29-37.
    [11]欧进萍.结构振动控制———主动,半主动与智能控制[M].北京:科学出版社,2003.
    [12]Veletsos A S,Varbic B.Vibration of Viscoelastic Foundations[J].EESD,1973(2):87-102
    [13]Berton.Dynamic behavior of simple soil-structure systems[R].University of California(National Science Foundation Grant No.DUE-9950340),http://ucist.cive.wustl.edu
    [14]AMD_2F_1C.pdf.
    [15]张春巍,欧进萍.电磁驱动AMD系统控制结构地震响应的振动台试验[J].地震工程与工程振动,2006,26(2):104-110.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心