可液化土中地铁结构的地震响应
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
在饱和土耦合作用与土和结构相互作用理论基础上,以地铁车站为例,用有限元法研究地下结构在地震液化作用下的响应。所采用的软件为动力两相体非线性有限元软件 Dyna-Swandyne-II,该软件可以应用先进的 Pastor-Zienkiewicz III 广义塑性模型模拟可液化土的动力特性,应用 u-p 形式的 Biot 方程,在有限元分析中充分考虑孔隙水与土之间的耦合,同时考虑地下结构与饱和土在动力作用下的非线性相互作用。分析了地铁车站的动力响应,包括地铁内力、加速度以及地铁位移。研究结果表明,地铁结构在地震液化作用下会产生较大的上浮,从而对结构造成比较严重的破坏;地铁结构在地震作用下的最大内力位于结构的交接处。因此,结构交接处的配筋应该格外小心。
Based on the theories of coupled interaction in saturated soil and dynamic soil-structure interaction, the response of subway structure in fully saturated liquefiable soil under earthquake excitation is investigated using the effective-stress based finite element program Dyna-Swandyne-II. A generalized plasticity model, Pastor-Zienkiewicz III model, is used to model the cyclic behavior of soil; and finite element procedure based on the u-p form of Biot theory is employed to conduct the coupled analysis. The nonlinearity of the interaction between soil and subway structure is fully considered. The dynamic response of subway structure, including the internal forces, the acceleration, and the vertical and horizontal displacements, are analyzed. The results showed that the subway structure may uplift due to the earthquake induced liquefaction, which shall lead to severe damage in the structure; and that the maximum seismic internal forces occurred at the connections of the structure elements and their reinforcement must be carefully designed. ZOU De-gao, KONG Xian-jing, LING H I, et al.
     Experimental study on the uplift behavior of pipeline in
     saturated sand foundation earthquake resistant measures
     during an earthquake[J]. Chinese Journal of Geotechn-
     ical Engineering, 2002, 24(3): 323-326.
    [6] Chan A H C. User manual for Diana Swandyne-II[R].
     Glasgow: University of Glasgow, 1989.
    [7] Katona M G, Zienkiewicz O C. A unified set of single step
     algorithms Part 3: The Beta-m method, a generalization of
     the newmark scheme[J]. International Journal for
     Numerical Methods in Engineering, 1985, 21: 1 345-1
     359.
    [8] Zienkiewicz O C, Chan A H C, Pastor M, Schrefler B A,
     Shiomi T. Computational Geomechanics with Special
     Reference to Earthquake Engineering[M]. New York:
     John Wiley & Sons, 1998.
    [9] Chan A H C, Famiyesin O O, Muir W D. Numerical
     prediction for model No. 1[A]. Arulanandan K, Scott R F.
     Verification of Numerical Procedures for the Analysis
     of Soil Liquefaction Problems[C]. Rotterdam: Balkema
     AA, 1994. 87-108.
    [10] Madabhushi S P G, Zeng X. Seismic response of gravity
     quay wall. II: numerical modeling[J]. Journal of
     Geotechnical and Geoenvironmental Engineering,
     American Society of Civil Engineering, 1998, 124(5):
     418-427.
    [11] Pastor M, Zienkiewicz O C, Chan A H C. Generalized
     plasticity and the modeling of soil behavior[J].
     International Journal for Numerical and Analytical
     Methods in Geomechanics, 1990, 14: 151-190.
    [12] Smith I M. A overview of numerical procedures used in
     VELACS project[A]. Arulanandan K, Scott R F.
     Verification of Numerical Procedures for the Analysis
     of Soil Liquefaction Problems[C]. Rotterdam: Balkema
     AA, 1994.
    [13] Hushmand B, Scott R F, Crouse C B. Centrifuge
     liquefaction tests in a laminar box[J]. Geotechnique,
     1988, 38: 253-262.
引文
[1]HamadaM,IsoyamaR,WakamatsuK.Liquefaction induced ground displacement and its related damage to lifeline facilities[J].Soils andFoundations,1996,36(1):81-97.
    [2]HashashY M A,HookJ J,SchmidtB,YaoJ.Seismic design and analysis of underground structures[J].Tunnelling andUndergroundSpaceTechnology,2001,16(4):247-293.
    [3]毕继红,张鸿,邓芃.基于耦合分析法的地铁隧道抗震研究[J].岩土力学,2003,24(5):100-103.BI Ji-hong,ZHANG Hong,DENG Peng.Anti-seismic study on metro tunnel based on coupling numerical analysis method[J].Rock andSoilMechanics,2003,24(5):100-103.
    [4]LingH I,MohriY,KawabataT,LiuH,BurkeC,SunL.Centrifugal modeling of seismic behavior of large-diameter pipe in liquefiable soil[J].Journal ofGeotechnical andGeoenvironmentalEngineering,AmericanSociety ofCivilEngineering,2003,129(12):1092-1101.
    [5]邹德高,孔宪京,LingH I 等.地震时饱和砂土地基中管线上浮机理及抗震措施试验研究[J].岩土工程学报,2002,24(3):323-326. ZOU De-gao,KONG Xian-jing,LING H I, et al.Experimental study on the uplift behavior of pipeline in saturated sand foundation earthquake resistant measures during an earthquake[J].ChineseJournal ofGeotechn- icalEngineering,2002,24(3):323-326.
    [6]ChanA H C.User manual forDianaSwandyne-II[R].Glasgow:University ofGlasgow,1989.
    [7]KatonaM G,ZienkiewiczO C.A unified set of single step algorithmsPart3:TheBeta-m method, a generalization of the newmark scheme[J].InternationalJournal forNumericalMethods inEngineering,1985,21:1345-1359.
    [8]ZienkiewiczO C,ChanA H C,PastorM,SchreflerB A,ShiomiT.ComputationalGeomechanics withSpecialReference toEarthquakeEngineering[M].NewYork:JohnWiley&Sons,1998.
    [9]ChanA H C,FamiyesinO O,MuirW D.Numerical prediction for modelNo.1[A].ArulanandanK,ScottR F.Verification ofNumericalProcedures for theAnalysis ofSoilLiquefactionProblems[C].Rotterdam:BalkemaAA,1994.87-108.
    [10]MadabhushiS P G,ZengX.Seismic response of gravity quay wall.II: numerical modeling[J].Journal ofGeotechnical andGeoenvironmentalEngineering,AmericanSociety ofCivilEngineering,1998,124(5):418-427.
    [11]PastorM,ZienkiewiczO C,ChanA H C.Generalized plasticity and the modeling of soil behavior[J].InternationalJournal forNumerical andAnalyticalMethods inGeomechanics,1990,14:151-190.
    [12]SmithI M.A overview of numerical procedures used inVELACS project[A].ArulanandanK,ScottR F.Verification ofNumericalProcedures for theAnalysis ofSoilLiquefactionProblems[C].Rotterdam:BalkemaAA,1994.
    [13]HushmandB,ScottR F,CrouseC B.Centrifuge liquefaction tests in a laminar box[J].Geotechnique,1988,38:253-262.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心