两种晶粒大理岩的力学性质研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
矿物结构是影响岩石力学特性的根本因素。对晶粒 0.5~1 mm 细晶微风化大理岩和晶粒 0.2~0.5 mm 粉晶风化大理岩,进行了超声波测试和单轴、常规三轴压缩试验。粉晶大理岩晶粒尺度较小,滑移界面较多,粘接强度稍有变化就显著影响变形,即单轴压缩强度离散性较小而杨氏模量离散性较大,杨氏模量是细晶大理岩的 1/3 左右,而单轴压缩强度仅低 20 %。细晶大理岩的杨氏模量与围压无关,粉晶大理岩的杨氏模量随围压而增大,但进入延性变形阶段后两种大理岩的三轴强度完全相同。岩样的剪切破坏角都是随围压增大而减小,最后达到 Coulomb 准则确定的数值。在较高围压下,试样的承载极限与应力路径、材料强度以及内部的缺陷关系不大。晶粒的摩擦决定了大理岩的强度、变形特性。
The texture of mineral particle is the key point to the mechanical property of rocks. Two kinds of marbles are uniaxial and triaxial compressed. One is slightly weathered with fine-crystal in size of 0.5mm~1mm, the other is weathered with silt-crystal in size of 0.2mm~0.5mm. The silt-crystal marble has much internal boundary to slip during compressing, so the Young’s modulus willbe changed greatly with the cohesion, and the dispersion of Young’s modulus is greater than that of strength. On the other hand, the fine-particle marble is 3 times in Young’s modulus but only 20% in uniaxial strength more than the silt-particle marble. In pseudo-triaxial compression, the Young’s modulus increases with confining pressure for silt-crystal marble, but it is nearly the same as fine-crystal marble. The triaxial strengths of the two marbles in ductile deformation are closed each other. The angle of shear failure increases with the confining pressure and finally reaches the value from Coulomb criterion The supporting capacity of marble specimen is only related to the confining pressure and no matter with the loading path, material strength and flaws. The internal friction between crystals determines the strength and deformation of marble.
引文
[1]尤明庆.岩样单轴压缩的失稳破坏和试验机加载性能[J].岩土力学,1998,19(3):43-49.
    [2]尤明庆.岩石试样的杨氏模量与围压的关系[J].岩石力学与工程学报,2003,22(1):43-50.
    [3]郭惠丰,伞桂兰.粗晶大理岩的三轴残余强度及蠕变原因[J].地下空间,1999,19(5):699-701.
    [4]孙吉主,汪秢.三轴压缩条件下钙质砂的颗粒破裂过程研究[J].岩土力学,2003,24(5):822-825.
    [5]王让甲.声波岩石分级和岩石动弹性力学参数的分析 研究[M].北京:地质出版社,1997.17-19.
    [6]尤明庆,苏承东,杨圣奇.岩石动静态参数间关系的研究[J].焦作工学院学报,2002,21(6):413-420.
    [7]尤明庆,苏承东,徐涛.岩石岩样的加载卸载过程及杨氏模量[J].岩土工程学报,2001,23(5):588-592.
    [8]陈书平,钟建华,宋全友.一种求解倾斜滑动断层差应力的方法[J].地质力学学报,1998,4(3):36-40.
    [9]陈颙.地壳岩石力学的性能[M].北京:地震出版社,1988.59-62.
    [10]陈庆宣,王维襄,孙叶等.岩石力学与构造应力场分析[M].北京:地质出版社,1998.48-50.
    [11]ByerleeJ D.Friction of rocks[J].Pure andAppliedGeophysics.1978,116:615-626.
    [12]尤明庆.岩样三轴压缩的破坏形式和Coulomb强度准则[J].地质力学学报,2002,8(2):179-185.
    [13]张国祥,刘宝琛.岩土面上的抗剪强度与破坏面位置[J].岩土力学,2002,23(6):730-732.
    [14]钟嘉猷.实验构造地质学及其应用[M].北京:科学出版社,1998.11-18.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心