塔里木盆地志留-泥盆系层序界面特征及成因类型
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
在层序地层学研究中关键是有关界面的识别,尤其是层序底界面的识别。以新疆塔里木盆地志留系—泥盆系为例,在大量野外剖面详细观测的基础上,识别出了层序底界面的物质表现形式有7种类型,它们分别是:古风化壳,渣状层,斜坡重力流冲刷侵蚀面,超覆面,最大海泛面,岩性、岩相转换面,侵蚀冲刷面。在详细讨论了各类型界面特征的基础上,将上述界面可归结为4种成因类型,分别是:造山侵蚀层序不整合界面,隆升侵蚀层序不整合界面,海侵上超层序不整合界面,陆上暴露层序不整合界面。这一研究成果对于正确识别和划分层序具有重要的意义。
It is well known that the key to research sequence stratigraphy is sequence identification and d(ivision), but the prerequisite for sequence identification and division is to identify the bottom boundary (surface) of a sequece. The boundary surface of a definite sequence includes sequence bottom boundary (surface), first trangressive surface and maximum marine flooding surface. Among them, the most (important) thing is to research the feature of sequence bottom boundary surface , because this is the (foundation) of sequence division. Taking Silurian System to Devonian System in Tarim Basin as example, through analysing flied geologic sections, the paper identifies seven types of sequence boundary surfaces. They are weathering crust, paleosol, washing erosion surface of gravity flow on slope, onlap surface, flooding transgressive surface, transition surface of rock character and facies, and erosion surface. The (paper) also disscuses the feature of the surfaces and studies the origin types of sequence boundary surface.
引文
[1]朱如凯,罗平,罗忠.塔里木盆地晚泥盆世及石炭纪岩相古地理[J].古地理学报,2002,4(1):13-25.
    [2]朱怀诚.塔里木盆地西南缘晚泥盆世孢子的发现及意义[J].地层学杂志,1996,20(4):252-256.
    [3]朱怀诚.塔里木盆地北部草2井东河砂岩孢子组合的时代[J].微体古生物学报,1998,15(4):219-223.
    [4]朱怀诚,詹家祯.塔里木盆地覆盖区泥盆—石炭系孢粉组合及生物地层[J].古生物学报,1996,35(增刊):139-161.
    [5]李罗照.巴楚小海子地区石炭纪地层的再研究[A].童晓光.塔里木盆地石油地质研究新进展[C].北京:科学出版社,1996.
    [6]张师本.塔里木盆地震旦纪至二叠纪地层古生物[M].北京:石油工业出版社,1991.
    [7]周志毅,陈丕基.塔里木生物地层和地质演化[M].北京:科学出版社,1990.
    [8]赵治信,韩建修,王增吉.塔里木盆地西南缘石炭纪地层及其生物群[M].北京:地质出版社,1984.
    [9]赵治信.塔里木盆地海相石炭系—下二叠统划分、对比[J].新疆石油地质,1990,11(2):122-131.
    [10]邹义声.塔北隆起井下巴楚组及东河砂岩段的时代[J].新疆石油地质,1996,17(4):358-363.
    [11]田景春,陈洪德,彭军,等.右江盆地深水沉积层序地层学研究[J].沉积学报,2000,18(2):210-214.
    [12]BrettCE,GoodmanWM,LoDucaSP.SequencestratigraphyandbasindynamicsintheSilurianofAppalachianforelandbasin[J].SedimentGeol,1990,69(3/4):191-224.
    [13]GallowayWE.Geneticstratigraphicsequencesinbasinanalysis[J].AAPGBull,1989,73:125-154.
    [14]HallamA.Pre-Quaternarychangesofsealevel[J].AnnRevPlanetEarthSci,1984,12:205-243.
    [15]MiallAD.Stratigraphicsequencesandtheirchronostratigraphiccorrelation[J].JourSedimentPetrol,1992,61(4):497-505.
    [16]PitmanWC.Relationshipbetweeneustacyandstratigraphicsequencesofpassivemargins[J].GeolSocAmBull,1978,89:1389-1403.
    [17]RossCA,RossJRP.LatePaleozoicsealevelsanddepositionalsequences[A].RossCA,HamanD.TimingandDepositionalHistoryofEustaticSe-quences:ConstraintsonSeismicStratigraphy[C].CushmanFoundForamRes,SpecPubl,1987,24:137-149.
    [18]VailPR,HardenbolJ.Sea-levelchangesduringtheTertiary[J].Oceans,1979,22:71-79.
    [19]VanWagonerJC,BetramGT.SequenceStratig-raphyofForelandBasinDeposits[J].AAPGMem,1995,64:1-487.
    [20]WeimerP,PosamentierHW.Siliciclasticsequencestratigraphy:Recentdevelopmentsandapplications[J].AAPGMem,1994,58:1-492.
    [21]田景春,陈洪德,覃建雄.层序底界面的物质表现形式[J].沉积学报,2003,21(4):675-682.
    [22]许效松,刘宝王君.上扬子西缘二叠-三叠纪层序地层与盆山转换耦合[M].北京:地质出版社,1997.31-53.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心