用户名: 密码: 验证码:
神经元活动依赖工具开发应用的研究进展与展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress and prospect of neural activity-dependent tools
  • 作者:王继华 ; 胡海岚
  • 英文作者:WANG JiHua;HU HaiLan;Center for Neuroscience, and Department of Psychiatry of First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology,Zhejiang University School of Medicine;
  • 关键词:活动依赖工具 ; 记忆印迹 ; 神经集群 ; 神经编码 ; 即早基因
  • 英文关键词:activity-dependent tool;;memory engram;;neural ensemble;;neural encoding;;IEG
  • 中文刊名:中国科学:生命科学
  • 英文刊名:Scientia Sinica(Vitae)
  • 机构:浙江大学医学院神经科学中心浙江大学医学院附属第一医院卫生部医学神经生物学重点实验室;
  • 出版日期:2019-03-07 16:46
  • 出版单位:中国科学:生命科学
  • 年:2019
  • 期:03
  • 基金:高等学校学科创新引智计划(111计划资助);; 国家自然科学基金(批准号:31830032,81527901);; 科技部国家重点研究发展计划(批准号:2016YFA0501000)资助
  • 语种:中文;
  • 页:12-29
  • 页数:18
  • CN:11-5840/Q
  • ISSN:1674-7232
  • 分类号:R338
摘要
大脑存在数量众多而功能异质的神经元,在响应刺激输入时,特定的神经元类群集结成印迹,构成细胞和环路水平的功能编码单元.为了解析这些功能编码单元,即早基因(IEG)激活、环腺苷酸反应元件结合蛋白(CREB)表达增高及Ca~(2+)内流等细胞活化的特性被相继开发成活动依赖工具,并被大量应用于记忆印迹和事件编码神经集群的解析研究.本文对LacZ-Daun02失活系统、CREB过表达系统、四环素标签工具(TetTag)、活性类群靶向重组工具(TRAP)、活化神经集群捕获工具(CANE)、人工改造的活性启动子工具(E-SARE和RAM)以及光控钙离子依赖工具(Ca-Light和FLARE)等活动依赖工具的原理及应用进行了综述,并展望了活动依赖工具的开发前景.
        Despite existing in large numbers with great heterogeneity, neurons form activity clusters in response to specific stimulus inputs.These activity clusters, also called engrams, are functional units that encode information at the cell and circuitry levels. Cell activation generally induces elevated CREB level, IEG expression and Ca2+influx, from which a variety of activity-dependent tools have been developed. These tools are widely used in memory engram and neural ensemble research. In this article, we review the principles and applications of these activity-dependent tools, including Lac Z-Daun02 inactivation system, CREB overexpression system, Tet Tag,TRAP, CANE, two synthetic activity-regulated promoters: E-SARE and RAM, and two calcium-and light-gated tools: Cal-light and FLARE. We also discuss the future development of activity-dependent tools.
引文
1 Semon R W.Die Mneme als Erhaltendes Prinzip im Wechsel des Organischen Lebens(Dritte Auflage).Leipzig:Wilhelm Engelmann,1904
    2 Semon R W.Die Mnemischen Empfindungen in Ihren Beziehungen zu den Originalempfindungen(Zweite Auflage).Leipzig:Wilhelm Engelmann,1909
    3 Hebb D O.The organization of behavior:a neuropsychological theory.1949
    4 Sokoloff L,Reivich M,Kennedy C,et al.The[14C]deoxyglucose method for the measurement of local cerebral glucose utilization:theory,procedure,and normal values in the conscious and anesthetized albino rat.J Neurochem,1977,28:897-916
    5 Jobsis F F.Noninvasive,infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters.Science,1977,198:1264-1267
    6 Ogawa S,Lee T M,Kay A R,et al.Brain magnetic resonance imaging with contrast dependent on blood oxygenation.Proc Natl Acad Sci USA,1990,87:9868-9872
    7 Kato M,Hosokawa S,Kuwabara Y.Imaging brain function with autoradiography and positron emission tomography.Tanpakushitsu Kakusan Koso,1990,35:1182-1191
    8 Bryant C A,Jackson S H D.Functional imaging of the brain in the evaluation of drug response and its application to the study of aging.Drugs Aging,1998,13:211-222
    9 Berger H.Ber das elektrenkephalogramm des menschen.Eur Archiv Psychiat Clin Neurosci,1929,87:527-570
    10 Cohen D.Magnetoencephalography:evidence of magnetic fields produced by alpha-rhythm currents.Science,1968,161:784-786
    11 Lopes da Silva F.Eeg and meg:relevance to neuroscience.Neuron,2013,80:1112-1128
    12 Neher E,Sakmann B.Single-channel currents recorded from membrane of denervated frog muscle fibres.Nature,1976,260:799-802
    13 Hubel D H.Single unit activity in lateral geniculate body and optic tract of unrestrained cats.J Physiol,1960,150:91-104
    14 Mc Naughton B L,O’Keefe J,Barnes C A.The stereotrode:a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records.J Neurosci Methods,1983,8:391-397
    15 Sun F,Zeng J,Jing M,et al.A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies,fish,and mice.Cell,2018,174:481-496.e19
    16 Marvin J S,Borghuis B G,Tian L,et al.An optimized fluorescent probe for visualizing glutamate neurotransmission.Nat Methods,2013,10:162-170
    17 Patriarchi T,Cho J R,Merten K,et al.Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors.Science,2018,360:eaat4422
    18 Jing M,Zhang P,Wang G,et al.A genetically encoded fluorescent acetylcholine indicator for in vitro and in vivo studies.Nat Biotechnol,2018,50
    19 Stoeber M,JulliéD,Lobingier B T,et al.A genetically encoded biosensor reveals location bias of opioid drug action.Neuron,2018,98:963-976.e5
    20 Adelsberger H,Garaschuk O,Konnerth A.Cortical calcium waves in resting newborn mice.Nat Neurosci,2005,8:988-990
    21 Cui G,Jun S B,Jin X,et al.Concurrent activation of striatal direct and indirect pathways during action initiation.Nature,2013,494:238-242
    22 Trachtenberg J T,Chen B E,Knott G W,et al.Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex.Nature,2002,420:788-794
    23 Grutzendler J,Kasthuri N,Gan W B.Long-term dendritic spine stability in the adult cortex.Nature,2002,420:812-816
    24 Hamel E J O,Grewe B F,Parker J G,et al.Cellular level brain imaging in behaving mammals:an engineering approach.Neuron,2015,86:140-159
    25 Ungerstedt U,Pycock C.Functional correlates of dopamine neurotransmission.Bull Schweiz Akad Med Wiss,1974,30:44-55
    26 Robinson D L,Venton B J,Heien M L,et al.Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo.Clin Chem,2003,49:1763-1773
    27 Morgan J I,Cohen D R,Hempstead J L,et al.Mapping patterns of c-fos expression in the central nervous system after seizure.Science,1987,237:192-197
    28 Link W,Konietzko U,Kauselmann G,et al.Somatodendritic expression of an immediate early gene is regulated by synaptic activity..Proc Natl Acad Sci USA,1995,92:5734-5738
    29 Lyford G L,Yamagata K,Kaufmann W E,et al.Arc,a growth factor and activity-regulated gene,encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites.Neuron,1995,14:433-445
    30 Saffen D W,Cole A J,Worley P F,et al.Convulsant-induced increase in transcription factor messenger rnas in rat brain.Proc Natl Acad Sci USA,1988,85:7795-7799
    31 Brakeman P R,Lanahan A A,O’Brien R,et al.Homer:a protein that selectively binds metabotropic glutamate receptors.Nature,1997,386:284-288
    32 Kato A,Ozawa F,Saitoh Y,et al.Vesl,a gene encoding VASP/Ena family related protein,is upregulated during seizure,long-term potentiation and synaptogenesis.FEBS Lett,1997,412:183-189
    33 Sun X,Lin Y.Npas4:linking neuronal activity to memory.Trends Neurosci,2016,39:264-275
    34 Ginty D D,Kornhauser J M,Thompson M A,et al.Regulation of creb phosphorylation in the suprachiasmatic nucleus by light and a circadian clock.Science,1993,260:238-241
    35 Bito H,Deisseroth K,Tsien R W.CREB phosphorylation and dephosphorylation:a Ca2+-and stimulus duration-dependent switch for hippocampal gene expression.Cell,1996,87:1203-1214
    36 Knight Z A,Tan K,Birsoy K,et al.Molecular profiling of activated neurons by phosphorylated ribosome capture.Cell,2012,151:1126-1137
    37 Okuno H.Regulation and function of immediate-early genes in the brain:beyond neuronal activity markers.Neurosci Res,2011,69:175-186
    38 Kawashima T,Okuno H,Bito H.A new era for functional labeling of neurons:activity-dependent promoters have come of age.Front Neural Circuits,2014,8:37
    39 Cruz F C,Javier Rubio F,Hope B T.Using c-fos to study neuronal ensembles in corticostriatal circuitry of addiction.Brain Res,2015,1628:157-173
    40 Curran T,Morgan J I.Fos:an immediate-early transcription factor in neurons.J Neurobiol,1995,26:403-412
    41 Smeyne R J,Schilling K,Robertson L,et al.Fos-Iac Z transgenic mice:mapping sites of gene induction in the central nervous system.Neuron,1992,8:13-23
    42 Wilson Y,Nag N,Davern P,et al.Visualization of functionally activated circuitry in the brain.Proc Natl Acad Sci USA,2002,99:3252-3257
    43 Barth A L.Alteration of neuronal firing properties after in vivo experience in a fosgfp transgenic mouse.J Neurosci,2004,24:6466-6475
    44 Geusz M E,Fletcher C,Block G D,et al.Long-term monitoring of circadian rhythms in c-fos gene expression from suprachiasmatic nucleus cultures.Curr Biol,1997,7:758-766
    45 Kasof G,Mandelzys A,Maika S,et al.Kainic acid-induced neuronal death is associated with DNA damage and a unique immediate-early gene response in c-fos-lacz transgenic rats.J Neurosci,1995,15:4238-4249
    46 Cifani C,Koya E,Navarre B M,et al.Medial prefrontal cortex neuronal activation and synaptic alterations after stress-induced reinstatement of palatable food seeking:a study using c-fos-gfp transgenic female rats.J Neurosci,2012,32:8480-8490
    47 Knapska E,Macias M,Mikosz M,et al.Functional anatomy of neural circuits regulating fear and extinction.Proc Natl Acad Sci USA,2012,109:17093-17098
    48 Reijmers L G,Perkins B L,Matsuo N,et al.Localization of a stable neural correlate of associative memory.Science,2007,317:1230-1233
    49 Gore F,Schwartz E C,Brangers B C,et al.Neural representations of unconditioned stimuli in basolateral amygdala mediate innate and learned responses.Cell,2015,162:134-145
    50 Zhang Z,Ferretti V,Güntan?,et al.Neuronal ensembles sufficient for recovery sleep and the sedative actions ofα2 adrenergic agonists.Nat Neurosci,2015,18:553-561
    51 Roy D S,Arons A,Mitchell T I,et al.Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease.Nature,2016,531:508-512
    52 Ye L,Allen W E,Thompson K R,et al.Wiring and molecular features of prefrontal ensembles representing distinct experiences.Cell,2016,165:1776-1788
    53 Choi J H,Sim S E,Kim J I,et al.Interregional synaptic maps among engram cells underlie memory formation.Science,2018,360:430-435
    54 Guenthner C J,Miyamichi K,Yang H H,et al.Permanent genetic access to transiently active neurons via trap:targeted recombination in active populations.Neuron,2013,78:773-784
    55 Sakurai K,Zhao S,Takatoh J,et al.Capturing and manipulating activated neuronal ensembles with cane delineates a hypothalamic social-fear circuit.Neuron,2016,92:739-753
    56 Allen W E,De Nardo L A,Chen M Z,et al.Thirst-associated preoptic neurons encode an aversive motivational drive.Science,2017,357:1149-1155
    57 S?rensen A T,Cooper Y A,Baratta M V,et al.A robust activity marking system for exploring active neuronal ensembles.e Life,2016,5
    58 Wang K H,Majewska A,Schummers J,et al.In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex.Cell,2006,126:389-402
    59 Eguchi M,Yamaguchi S.In vivo and in vitro visualization of gene expression dynamics over extensive areas of the brain.Neuroimage,2009,44:1274-1283
    60 Mikuni T,Uesaka N,Okuno H,et al.Arc/arg3.1 is a postsynaptic mediator of activity-dependent synapse elimination in the developing cerebellum.Neuron,2013,78:1024-1035
    61 Okuno H,Akashi K,Ishii Y,et al.Inverse synaptic tagging of inactive synapses via dynamic interaction of Arc/Arg3.1 with Ca MKIIβ.Cell,2012,149:886-898
    62 Grinevich V,Kolleker A,Eliava M,et al.Fluorescent arc/arg3.1 indicator mice:a versatile tool to study brain activity changes in vitro and in vivo.J Neurosci Methods,2009,184:25-36
    63 Izumi H,Ishimoto T,Yamamoto H,et al.Bioluminescence imaging of arc expression enables detection of activity-dependent and plastic changes in the visual cortex of adult mice.Brain Struct Funct,2011,216:91-104
    64 Denny C A,Kheirbek M A,Alba E L,et al.Hippocampal memory traces are differentially modulated by experience,time,and adult neurogenesis.Neuron,2014,83:189-201
    65 Kawashima T,Okuno H,Nonaka M,et al.Synaptic activity-responsive element in the arc/arg3.1 promoter essential for synapse-to-nucleus signaling in activated neurons.Proc Natl Acad Sci USA,2009,106:316-321
    66 Kawashima T,Kitamura K,Suzuki K,et al.Functional labeling of neurons and their projections using the synthetic activity-dependent promoter E-SARE.Nat Meth,2013,10:889-895
    67 Man P S,Wells T,Carter D A.Egr-1-d2egfp transgenic rats identify transient populations of neurons and glial cells during postnatal brain development.Gene Expression Patterns,2007,7:872-883
    68 Tsai J C,Liu L,Cooley B C,et al.The egr-1 promoter contains information for constitutive and inducible expression in transgenic mice.FASEBJ,2000,14:1870-1872
    69 Xie H,Liu Y,Zhu Y,et al.In vivo imaging of immediate early gene expression reveals layer-specific memory traces in the mammalian brain.Proc Natl Acad Sci USA,2014,111:2788-2793
    70 Impey S,Mark M,Villacres E C,et al.Induction of cre-mediated gene expression by stimuli that generate long-lasting ltp in area ca1 of the hippocampus.Neuron,1996,16:973-982
    71 B?er U,Alejel T,Beimesche S,et al.Cre/creb-driven up-regulation of gene expression by chronic social stress in cre-luciferase transgenic mice:reversal by antidepressant treatment.PLo S ONE,2007,2:e431
    72 Fosque B F,Sun Y,Dana H,et al.Labeling of active neural circuits in vivo with designed calcium integrators.Science,2015,347:755-760
    73 Gao X J,Riabinina O,Li J,et al.A transcriptional reporter of intracellular Ca2+in Drosophila.Nat Neurosci,2015,18:917-925
    74 Lee D,Hyun J H,Jung K,et al.A calcium-and light-gated switch to induce gene expression in activated neurons.Nat Biotechnol,2017,35:858-863
    75 Wang W,Wildes C P,Pattarabanjird T,et al.A light-and calcium-gated transcription factor for imaging and manipulating activated neurons.Nat Biotechnol,2017,35:864-871
    76 Han J H,Kushner S A,Yiu A P,et al.Neuronal competition and selection during memory formation.Science,2007,316:457-460
    77 Han J H,Kushner S A,Yiu A P,et al.Selective erasure of a fear memory.Science,2009,323:1492-1496
    78 Zhou Y,Won J,Karlsson M G,et al.Creb regulates excitability and the allocation of memory to subsets of neurons in the amygdala.Nat Neurosci,2009,12:1438-1443
    79 Hsiang H L,Epp J R,van den Oever M C,et al.Manipulating a“cocaine engram”in mice.J Neurosci,2014,34:14115-14127
    80 Yiu A P,Mercaldo V,Yan C,et al.Neurons are recruited to a memory trace based on relative neuronal excitability immediately before training.Neuron,2014,83:722-735
    81 Park S,Kramer E E,Mercaldo V,et al.Neuronal allocation to a hippocampal engram.Neuropsychopharmacology,2016,41:2987-2993
    82 Kim J,Kwon J T,Kim H S,et al.Memory recall and modifications by activating neurons with elevated creb.Nat Neurosci,2014,17:65-72
    83 Kim Y,Venkataraju K U,Pradhan K,et al.Mapping social behavior-induced brain activation at cellular resolution in the mouse.Cell Rep,2015,10:292-305
    84 Kim Y,Perova Z,Mirrione M M,et al.Whole-brain mapping of neuronal activity in the learned helplessness model of depression.Front Neural Circuits,2016,10
    85 Koya E,Golden S A,Harvey B K,et al.Targeted disruption of cocaine-activated nucleus accumbens neurons prevents context-specific sensitization.Nat Neurosci,2009,12:1069-1073
    86 Fanous S,Goldart E M,Theberge F R M,et al.Role of orbitofrontal cortex neuronal ensembles in the expression of incubation of heroin craving.J Neurosci,2012,32:11600-11609
    87 Caprioli D,Venniro M,Zhang M,et al.Role of dorsomedial striatum neuronal ensembles in incubation of methamphetamine craving after voluntary abstinence.J Neurosci,2017,37:1014-1027
    88 Pfarr S,Meinhardt M W,Klee M L,et al.Losing control:excessive alcohol seeking after selective inactivation of cue-responsive neurons in the infralimbic cortex.J Neurosci,2015,35:10750-10761
    89 Funk D,Coen K,Tamadon S,et al.Role of central amygdala neuronal ensembles in incubation of nicotine craving.J Neurosci,2016,36:8612-8623
    90 Bossert J M,Stern A L,Theberge F R M,et al.Ventral medial prefrontal cortex neuronal ensembles mediate context-induced relapse to heroin.Nat Neurosci,2011,14:420-422
    91 Xue Y X,Chen Y Y,Zhang L B,et al.Selective inhibition of amygdala neuronal ensembles encoding nicotine-associated memories inhibits nicotine preference and relapse.Biol Psychiatry,2017,82:781-793
    92 Frankland P W,Josselyn S A.Memory allocation.Neuropsychopharmacology,2015,40:243
    93 Sano Y,Shobe J L,Zhou M,et al.Creb regulates memory allocation in the insular cortex.Curr Biol,2014,24:2833-2837
    94 He Q,Wang J,Hu H.Illuminating the activated brain:emerging activity-dependent tools to capture and control functional neural circuits.Neurosci Bull,2018,157
    95 Lewandoski M.Conditional control of gene expression in the mouse.Nat Rev Genet,2001,2:743-755
    96 Liu X,Ramirez S,Pang P T,et al.Optogenetic stimulation of a hippocampal engram activates fear memory recall.Nature,2012,35:381-385
    97 Garner A R,Rowland D C,Hwang S Y,et al.Generation of a synthetic memory trace.Science,2012,335:1513-1516
    98 Redondo R L,Kim J,Arons A L,et al.Bidirectional switch of the valence associated with a hippocampal contextual memory engram.Nature,2014,513:426-430
    99 Okuyama T,Kitamura T,Roy D S,et al.Ventral ca1 neurons store social memory.Science,2016,353:1536-1541
    100 Ryan T J,Roy D S,Pignatelli M,et al.Engram cells retain memory under retrograde amnesia.Science,2015,348:1007-1013
    101 Cowansage K K,Shuman T,Dillingham B C,et al.Direct reactivation of a coherent neocortical memory of context.Neuron,2014,84:432-441
    102 Khalaf O,Resch S,Dixsaut L,et al.Reactivation of recall-induced neurons contributes to remote fear memory attenuation.Science,2018,360:1239-1242
    103 Ramirez S,Liu X,Mac Donald C J,et al.Activating positive memory engrams suppresses depression-like behaviour.Nature,2015,522:335-339
    104 Kitamura T,Ogawa S K,Roy D S,et al.Engrams and circuits crucial for systems consolidation of a memory.Science,2017,356:73-78
    105 Guo N,Soden M E,Herber C,et al.Dentate granule cell recruitment of feedforward inhibition governs engram maintenance and remote memory generalization.Nat Med,2018,24:438-449
    106 Davis P,Zaki Y,Maguire J,et al.Cellular and oscillatory substrates of fear extinction learning.Nat Neurosci,2017,20:1624-1633
    107 Trouche S,Perestenko P V,van de Ven G M,et al.Recoding a cocaine-place memory engram to a neutral engram in the hippocampus.Nat Neurosci,2016,19:564-567
    108 Cai D J,Aharoni D,Shuman T,et al.A shared neural ensemble links distinct contextual memories encoded close in time.Nature,2016,534:115-118
    109 Yokose J,Okubo-Suzuki R,Nomoto M,et al.Overlapping memory trace indispensable for linking,but not recalling,individual memories.Science,2017,355:398-403
    110 Abdou K,Shehata M,Choko K,et al.Synapse-specific representation of the identity of overlapping memory engrams.Science,2018,360:1227-1231
    111 Ohkawa N,Saitoh Y,Suzuki A,et al.Artificial association of pre-stored information to generate a qualitatively new memory.Cell Rep,2015,11:261-269
    112 Nomoto M,Ohkawa N,Nishizono H,et al.Cellular tagging as a neural network mechanism for behavioural tagging.Nat Commun,2016,7
    113 Root C M,Denny C A,Hen R,et al.The participation of cortical amygdala in innate,odour-driven behaviour.Nature,2014,515:269-273
    114 Jeong J W,Mc Call J G,Shin G,et al.Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics.Cell,2015,162:662-674
    115 Kim J,Pignatelli M,Xu S,et al.Antagonistic negative and positive neurons of the basolateral amygdala.Nat Neurosci,2016,19:1636-1646
    116 Kim C K,Ye L,Jennings J H,et al.Molecular and circuit-dynamical identification of top-down neural mechanisms for restraint of reward seeking.Cell,2017,170:1013-1027.e14
    117 Greer P L,Greenberg M E.From synapse to nucleus:calcium-dependent gene transcription in the control of synapse development and function.Neuron,2008,59:846-860
    118 Dreosti E,Odermatt B,Dorostkar M M,et al.A genetically encoded reporter of synaptic activity in vivo.Nat Methods,2009,6:883-889
    119 Tian L,Hires S A,Looger L L.Imaging neuronal activity with genetically encoded calcium indicators.Cold Spring Harbor Protocols,2012,2012:pdb.top069609
    120 Riemensperger T,Pech U,Dipt S,et al.Optical calcium imaging in the nervous system of drosophila melanogaster.Biochim Biophys Acta,2012,1820:1169-1178
    121 Barnea G,Strapps W,Herrada G,et al.The genetic design of signaling cascades to record receptor activation.Proc Natl Acad Sci USA,2008,105:64-69
    122 Kroeze W K,Sassano M F,Huang X P,et al.Presto-tango as an open-source resource for interrogation of the druggable human gpcrome.Nat Struct Mol Biol,2015,22:362-369
    123 Harper S M,Neil L C,Gardner K H.Structural basis of a phototropin light switch.Science,2003,301:1541-1544
    124 Humphries M D,Prescott T J.The ventral basal ganglia,a selection mechanism at the crossroads of space,strategy,and reward.Prog Neurobiol,2010,90:385-417
    125 Lin D,Boyle M P,Dollar P,et al.Functional identification of an aggression locus in the mouse hypothalamus.Nature,2011,470:221-226
    126 Janak P H,Tye K M.From circuits to behaviour in the amygdala.Nature,2015,517:284-292
    127 Chaudhuri A,Nissanov J,Larocque S,et al.Dual activity maps in primate visual cortex produced by different temporal patterns of zif268 mrna and protein expression.Proc Natl Acad Sci USA,1997,94:2671-2675
    128 Xiu J,Zhang Q,Zhou T,et al.Visualizing an emotional valence map in the limbic forebrain by tai-fish.Nat Neurosci,2014,17:1552-1559
    129 Guzowski J F,Mc Naughton B L,Barnes C A,et al.Environment-specific expression of the immediate-early gene arc in hippocampal neuronal ensembles.Nat Neurosci,1999,2:1120-1124
    130 Robertson G S,Vincent S R,Fibiger H C.D1 and d2 dopamine receptors differentially regulate c-fos expression in striatonigral and striatopallidal neurons.Neuroscience,1992,49:285-296
    131 Robertson G S,Jian M.D1 and d2 dopamine receptors differentially increase fos-like immunoreactivity in accumbal projections to the ventral pallidum and midbrain.Neuroscience,1995,64:1019-1034
    132 Campeau S,Watson Jr.S J.D1 and d2 dopamine receptors differentially increase fos-like immunoreactivity in accumbal projections to the ventral pallidum and midbrain.J Comp Neurol,2000,423:474-491
    133 Lerner T N,Shilyansky C,Davidson T J,et al.Intact-brain analyses reveal distinct information carried by snc dopamine subcircuits.Cell,2015,162:635-647
    134 Matsuda T,Cepko C L.Controlled expression of transgenes introduced by in vivo electroporation.Proc Natl Acad Sci USA,2007,104:1027-1032
    135 Xu W,Südhof T C.A neural circuit for memory specificity and generalization.Science,2013,339:1290-1295
    136 Oh S W,Harris J A,Ng L,et al.A mesoscale connectome of the mouse brain.Nature,2014,508:207-214
    137 Lee E,Kim H J,Sun W.See-through technology for biological tissue:3-dimensional visualization of macromolecules.Int Neurourol J,2016,20:S15-S22
    138 Li A,Gong H,Zhang B,et al.Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain.Science,2010,330:1404-1408
    139 Gong H,Xu D,Yuan J,et al.High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level.Nat Commun,2016,7:12142
    140 Ragan T,Kadiri L R,Venkataraju K U,et al.Serial two-photon tomography for automated ex vivo mouse brain imaging.Nat Methods,2012,9:255-258
    141 Seiriki K,Kasai A,Hashimoto T,et al.High-speed and scalable whole-brain imaging in rodents and primates.Neuron,2017,94:1085-1100.e6
    142 Reardon T R,Murray A J,Turi G F,et al.Rabies virus CVS-N2cΔG strain enhances retrograde synaptic transfer and neuronal viability.Neuron,2016,89:711-724
    143 Ciabatti E,González-Rueda A,Mariotti L,et al.Life-long genetic and functional access to neural circuits using self-inactivating rabies virus.Cell,2017,170:382-392.e14
    144 Goshen I,Brodsky M,Prakash R,et al.Dynamics of retrieval strategies for remote memories.Cell,2011,147:1197
    145 Kheirbek M A,Drew L J,Burghardt N S,et al.Differential control of learning and anxiety along the dorsoventral axis of the dentate gyrus.Neuron,2013,77:955-968
    146 Tanaka K Z,He H,Tomar A,et al.The hippocampal engram maps experience but not place.Science,2018,361:392-397
    147 Tan C L,Cooke E K,Leib D E,et al.Warm-sensitive neurons that control body temperature.Cell,2016,167:47-59.e15
    148 Zhao Z D,Yang W Z,Gao C,et al.A hypothalamic circuit that controls body temperature.Proc Natl Acad Sci USA,2017,114:2042-2047
    149 Wu Y E,Pan L,Zuo Y,et al.Detecting activated cell populations using single-cell RNA-seq.Neuron,2017,96:313-329.e6
    150 Cruz F C,Koya E,Guez-Barber D H,et al.New technologies for examining the role of neuronal ensembles in drug addiction and fear.Nat Rev Neurosci,2013,14:743-754
    151 Spiegel I,Mardinly A R,Gabel H W,et al.Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs.Cell,2014,157:1216-1229
    152 Dragunow M,Faull R.The use of c-fos as a metabolic marker in neuronal pathway tracing.J Neurosci Methods,1989,29:261-265
    153 Labiner D,Butler L,Cao Z,et al.Induction of c-fos m RNA by kindled seizures:complex relationship with neuronal burst firing.J Neurosci,1993,13:744-751
    154 Kovács K J.Invited review c-Fos as a transcription factor:a stressful(re)view from a functional map.Neurochem Int,1998,33:287-297
    155 Wunderlich F T,Wildner H,Rajewsky K,et al.New variants of inducible cre recombinase:a novel mutant of cre-pr fusion protein exhibits enhanced sensitivity and an expanded range of inducibility.Nucl Acids Res,2001,29:47e-47
    156 Sando R,Baumgaertel K,Pieraut S,et al.Inducible control of gene expression with destabilized cre.Nat Methods,2013,10:1085-1088
    157 Marshall J D,Li J Z,Zhang Y,et al.Cell-type-specific optical recording of membrane voltage dynamics in freely moving mice.Cell,2016,167:1650-1662.e15
    158 Akerboom J,Carreras Calderón N,Tian L,et al.Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics.Front Mol Neurosci,2013,6:2
    159 Grosenick L,Marshel J H,Deisseroth K.Closed-loop and activity-guided optogenetic control.Neuron,2015,86:106-139
    160 Dal Maschio M,Donovan J C,Helmbrecht T O,et al.Linking neurons to network function and behavior by two-photon holographic optogenetics and volumetric imaging.Neuron,2017,94:774-789.e5
    161 Carrillo-Reid L,Yang W,Kang Miller J E,et al.Imaging and optically manipulating neuronal ensembles.Annu Rev Biophys,2017,46:271-293
    162 Remedios R,Kennedy A,Zelikowsky M,et al.Social behaviour shapes hypothalamic neural ensemble representations of conspecific sex.Nature,2017,550:388-392
    163 Li Y,Mathis A,Grewe B F,et al.Neuronal representation of social information in the medial amygdala of awake behaving mice.Cell,2017,171:1176-1190.e17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700