用户名: 密码: 验证码:
河流鱼类分类群和功能群的纵向梯度格局——以新安江流域为例
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Longitudinal patterns in taxonomic and functional organizations of fish assemblages in the Xin′an River
  • 作者:陈兵 ; 孟雪晨 ; 张东 ; 储玲 ; 严云志
  • 英文作者:CHEN Bing;MENG Xuechen;ZHANG Dong;CHU Ling;YAN Yunzhi;Provincial Key Laboratory of Biotic Environmental and Ecological Safety, College of Life Sciences, Anhui Normal University;
  • 关键词:河流连续统 ; 群落周转与嵌套 ; 环境过滤与扩散限制 ; 分类群和功能群
  • 英文关键词:river continuum concept;;community nestedness and turnover;;environmental filtering and dispersal limitation;;taxonomic and functional organizations
  • 中文刊名:生态学报
  • 英文刊名:Acta Ecologica Sinica
  • 机构:安徽师范大学生命科学学院安徽省高校生物环境与生态安全省级重点实验室;
  • 出版日期:2019-05-16 16:43
  • 出版单位:生态学报
  • 年:2019
  • 期:15
  • 基金:国家自然科学基金项目(31500452,31872251)
  • 语种:中文;
  • 页:356-371
  • 页数:16
  • CN:11-2031/Q
  • ISSN:1000-0933
  • 分类号:Q958.8
摘要
确定鱼类群落的空间格局是保护和管理河流鱼类多样性的基础。尽管河流鱼类分类群(基于物种组成)的纵向梯度格局已得到大量报道,但其功能群(基于功能特征)的空间格局研究较少。以皖南山区新安江为研究流域,沿其"正源-下游"梯度共设置27个调查样点,分别于2017年5月和10月完成2次调查取样,着重研究了鱼类分类群和功能群结构的纵向梯度格局及其形成机制。共采集鱼类44种,可分为5个运动功能群和4个营养功能群,构成14个"营养-运动"复合功能群。双因素交互相似性分析结果显示,鱼类分类群和功能群均随河流级别显著变化,但两者均无显著的季节变化;根据相似性百分比分析,由1级至3级河流,数量优势物种和功能群的空间变化主要呈嵌套格局,而由3级至5级河流其变化主要呈周转格局。方差分解结果显示,局域栖息地、陆地景观和支流空间位置3类解释变量对分类群和功能群空间变化的解释率分别为33.6%和38.5%,其中,分类群受局域栖息地和支流空间位置变量的显著影响,而功能群受局域栖息地和陆地景观变量的显著影响。研究表明,沿着新安江的"上游-下游"纵向梯度,鱼类分类群和功能群的空间格局基本一致,但两者的形成机制不同:分类群的纵向梯度变化受环境过滤和扩散过程的联合影响,而功能群则主要受环境过滤影响。
        Identifying spatial patterns is important for the conservation and management of fish diversity in streams. The spatial variation along the upstream-downstream gradient in stream fish assemblages has been substantially investigated previously. However, most investigations have focused on the species-composition-based taxonomic organizations but the species-trait-based functional organizations have received less attention. In this study, we sampled fishes from 27 segments along the upstream-downstream gradient of the Xin′an River during May and October 2017. Our aims were to examine the longitudinal variation in taxonomic and functional assemblages of stream fish assemblages, and to determine the relative importance of local habitat, segment spatial position, and landscape condition on fish assemblage composition. According to the feeding habits and locomotion traits of the fishes, the 44 species collected in this study were divided into four feeding groups, five locomotion groups, and 14 combined feeding-locomotion groups. A two-way crossed ANOSIM showed that both taxonomic and functional organizations differed significantly among the 1~(st)— to 5~(th)-order streams, but they did not differ significantly between May and October. According to SIMPER, the spatial patterns of abundance-dominant species and functional guilds were similar along the upstream-downstream gradient. From the 1~(st)— to 3~(rd)-order streams, the changes in fish assemblages agreed with the patterns of community nestedness, i.e., small assemblages nested within larger assemblages. However, from the 3~(rd)— to 5~(th)-order streams, the changes agreed with patterns of community turnover, i.e., both species/guild loss and gain occurring from one assemblage to another. Variance partitioning showed that all three types of explanatory variables measured(i.e., local habitat, landscape condition, and segment spatial position) explained 33.6% of the spatial variation in taxonomic organizations and 38.5% of the functional organizations. In addition, the taxonomic organizations was significantly affected by the local habitat and segment spatial position; whereas, the landscape condition was less important. The functional organizations were significantly influenced by local habitat and landscape condition, but the segment spatial position variables were less important. Overall, our results suggest that, along the upstream-downstream gradient, both taxonomic and functional organizations of fish assemblages exhibit similar levels of spatial variation. However, spatial variation in taxonomic organizations is driven by both environmental filtering and species dispersal, whereas the functional organizations are mainly determined by environmental filtering.
引文
[1] Grossman G D,Dowd J F,Crawford M.Assemblage stability in stream fishes:A review.Environmental Management,1990,14(5):661- 671.
    [2] Jackson D A,Peres-Neto P R,Olden J D.What controls who is where in freshwater fish communities — the roles of biotic,abiotic,and spatial factors.Canadian Journal of Fisheries and Aquatic Sciences,2011,58(1):157- 170.
    [3] Vannote R L,Minshall G W,Cummins K W,Sedell J R,Cushing C E.The river continuum concept.Canadian Journal of Fisheries and Aquatic Sciences,1980,37(1):130- 137.
    [4] Resh V H,Brown A V,Covich A P,Gurtz M E,Li H W,Minshall G W,Reice S R,Sheldon A L,Wallace J B,Wissmar R C.The role of disturbance in stream ecology.Journal of the North American Benthological Society,1988,7(4):433- 455.
    [5] Oberdorff T,Guilbert E,Lucchetta J C.Patterns of fish species richness in the Seine River Basin,France.Hydrobiologia,1993,259(3):157- 167.
    [6] Sui X Y,Lu Z,Yan Y Z,Chen Y F,Jia Y T.Influence of a large dam on the longitudinal patterns of fish assemblages in Qingyi Stream.Zoological Research,2014,35(5):362- 372.
    [7] Matthews W J.Patterns in Freshwater Fish Ecology.London:Chapman and Hall,1998.
    [8] Baselga A.Partitioning the turnover and nestedness components of beta diversity.Global Ecology and Biogeography,2010,19(1):134- 143.
    [9] Whittaker R J,Fernández-Palacios J M.Island Biogeography:Ecology,Evolution,and Conservation.Oxford:Oxford University Press,2007.
    [10] Sheldon A L.Species Diversity and Longitudinal Succession in Stream Fishes.Ecology,1968,49(2):193- 198.
    [11] Evans J W,Noble R L.The longitudinal distribution of fishes in an east Texas stream.The American Midland Naturalist,1979,101(2):333- 343.
    [12] Schlosser I J,Schlosser I J.A conceptual framework for fish communities in small warmwater streams//Matthews W J,Heins D C,eds.Community and Evolutionary Ecology of North American Stream fishes.Norman:University of Oklahoma Press,1987:17- 24.
    [13] Taylor C M,Warren M L Jr.Dynamics in species composition of stream fish assemblages:Environmental variability and nested subsets.Ecology,2001,82(8):2320- 2330.
    [14] Balon E K,Stewart D J.Fish assemblages in a river with unusual gradient (Luongo,Africa-Zaire system),reflections on river zonation,and description of another new species.Environmental Biology of Fishes,1983,9(3/4):225- 252.
    [15] Huet M.Profiles and biology of western European streams as related to fish management.Transactions of the American Fisheries Society,1959,88(3):155- 163.
    [16] McGarvey D J,Hughes R M.Longitudinal zonation of Pacific northwest (U.S.A.) fish assemblages and the species-discharge relationship.Copeia,2008,2008(2):311- 321.
    [17] Mazzoni R,Lobón-Cerviá J.Longitudinal structure,density and production rates of a neotropical stream fish assemblage:the river Ubatiba in the Serra do Mar,southeast Brazil.Ecography,2010,23(5):588- 602.
    [18] Minshall G W,Petersen R C Jr,Nimz C F.Species richness in streams of different size from the same drainage basin.The American Naturalist,1985,125(1):16- 38.
    [19] Torgersen C E,Baxter C V,Li H W,McIntosh B A.Landscape influences on longitudinal patterns of river fishes:Spatially continuous analysis of fish-habitat relationships.American Fisheries Society Symposium,2006,48:473- 492.
    [20] Dunn R R,Gavin M C,Sanchez M C,Solomon J N.The pigeon paradox:dependence of global conservation on urban nature.Conservation Biology,2006,20(6):1814- 1816.
    [21] Li Y R,Tao J,Chu L,Yan Y Z.Effects of anthropogenic disturbances on α and β diversity of fish assemblages and their longitudinal patterns in subtropical streams,China.Ecology of Freshwater Fish,2018,27(6):433- 441.
    [22] Pease A A,González-Díaz A A,Rodiles-Hernández R,Winemiller K O.Functional diversity and trait-environment relationships of stream fish assemblages in a large tropical catchment.Freshwater Biology,2012,57(5):1060- 1075.
    [23] Olden J D,Kennard M J,Leprieur F,Tedesco P A,Winemiller K O,Garcia-Berthou E.Conservation biogeography of freshwater fishes:recent progress and future challenges.Diversity and Distributions,2010,16(3):496- 513.
    [24] Lamouroux N,Poff L R,Angermeier P L.Intercontinental Convergence of Stream Fish Community Traits along Geomorphic and Hydraulic Gradients.Ecology,2002,83(7):1792- 1807.
    [25] Ibarra M,Stewart D J.Longitudinal zonation of sandy beach fishes in the Napo River Basin,eastern Ecuador.Copeia,1989,1989(2):364- 381.
    [26] Goldstein R M,Meador M R.Comparisons of fish species traits from small streams to large rivers.Transactions of the American Fisheries Society,2004,133(4):971- 983.
    [27] Edds D R.Fish assemblage structure and environmental correlates in Nepal′s Gandaki River.Copeia,1993,1993(1):48- 60.
    [28] Marsh-Matthews E,Matthews W J.Spatial variation in relative abundance of a widespread,numerically dominant fish species and its effect on fish assemblage structure.Oecologia,2000,125(2):283- 292.
    [29] Johnson T B,Hoff M H,Trebitz A S,Bronte C R,Corry T D,Kitchell J F,Lozano S J,Mason D M,Scharold J V,Schram S T,Schreiner D R.Spatial patterns in assemblage structures of pelagic forage fish and zooplankton in Western Lake superior.Journal of Great Lakes Research,2004,30(S1):395- 406.
    [30] 张东,宛凤英,储玲,严云志.青弋江鱼类分类群和功能群的α和β多样性纵向梯度格局.生物多样性,2018,26(1):1- 13.
    [31] Zhu R,Li Q,Wang W J,Chu L,Yan Y Z.Effects of local,river-network and catchment factors on fish assemblages in the headwater streams of the Xin′an basin,China.Journal of Freshwater Ecology,2017,32(1):309- 322.
    [32] Strahler A N.Quantitative analysis of watershed geomorphology.Eos,Transactions,American Geophysical Union,1957,38(6):913- 920.
    [33] Nelson JS.Fishes of the World,4th edn.Hoboken:John Wiley & Sons,2006,523.
    [34] 陈小勇.云南鱼类名录.动物学研究,2013,34(4):281- 343.
    [35] Yan Y Z,Xiang X Y,Chu L,Zhan Y J,Fu C Z.Influences of local habitat and stream spatial position on fish assemblages in a dammed watershed,the Qingyi Stream,China.Ecology of Freshwater Fish,2011,20(2):199- 208.
    [36] Shreve R L.Statistical law of stream numbers.The Journal of Geology,1966,74(1):17- 37.
    [37] Fairchild G W,Horwitz R J,Nieman D A,Boyer M R,Knorr D F.Spatial variation and historical change in fish communities of the Schuylkill River drainage Southeast Pennsylvania.The American Midland Naturalist,1998,139(2):282- 295.
    [38] Osborne L L,Wiley M J.Influence of tributary spatial position on the structure of warmwater fish communities.Canadian Journal of Fisheries and Aquatic Sciences,1992,49(4):671- 681.
    [39] Villéger S,Mason N W H,Mouillot D.New multidimensional functional diversity indices for a multifaceted framework in functional ecology.Ecology,2008,89(8):2290- 2301.
    [40] Gatz A J Jr.Ecological morphology of freshwater stream fishes.Tulane Studies in Zoology and Botany,1979,21:91- 124.
    [41] Webb P W.Body form,locomotion and foraging in aquatic vertebrates.Integrative and Comparative Biology,1984,24(1):107- 120.
    [42] Winemiller K O,Rose K A.Patterns of life-history diversification in North American fishes:implications for population regulation.Canadian Journal of Fisheries and Aquatic Sciences,1992,49(10):2196- 2218.
    [43] Blanchet B,Abadi M,Fournet C.Automated verification of selected equivalences for security protocols.Journal of Logic and Algebraic Programming,2008,75(1):3- 51.
    [44] 朱仁,严云志,孙建建,黄海玲,谈小龙,林璐.黄山陈村水库河源溪流鱼类群落的食性.生态学杂志,2012,31(2):359- 366.
    [45] Pouilly M,Barrera S,Rosales C.Changes of taxonomic and trophic structure of fish assemblages along an environmental gradient in the Upper Beni watershed (Bolivia).Journal of Fish Biology,2006,68(1):137- 156.
    [46] Costas N,Pardo I.Isotopic variability in a stream longitudinal gradient:implications for trophic ecology.Aquatic Sciences,2015,77(2):231- 260.
    [47] Troia M J,Gido K B.Functional strategies drive community assembly of stream fishes along environmental gradients and across spatial scales.Oecologia,2015,177(2):545- 559.
    [48] Allan J D,Castillo M M.Stream Ecology:Structure and Function of Running Waters.2nd ed.Dordrecht,Netherlands:Springer Press,2007.
    [49] Leprieur F,Tedesco P A,Hugueny B,Beauchard O,Dürr H H,Brosse S,Oberdorff T.Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate change.Ecology Letters,2011,14(4):325- 334.
    [50] Gilliam J F,Fraser D F,Alkins-Koo M.Structure of a tropical stream fish community:a role for biotic interactions.Ecology,1993,74(6):1856- 1870.
    [51] Hoeinghaus D J,Winemiller K O,Birnbaum J S.Local and regional determinants of stream fish assemblage structure:inferences based on taxonomic vs.functional groups.Journal of Biogeography,2007,34(2):324- 338.
    [52] Dauwalter D C,Splinter D K,Fisher W L,Marston R A.Biogeography,ecoregions,and geomorphology affect fish species composition in streams of eastern Oklahoma,USA.Environmental Biology of Fishes,2008,82(3):237- 249.
    [53] Wang L Z,Lyons J,Kanehl P.Impacts of urban land cover on trout streams in Wisconsin and Minnesota.Transactions of the American Fisheries Society,2003,132(5):825- 839.
    [54] 王文剑,储玲,司春,朱仁,陈文豪,陈方明,严云志.秋浦河源国家湿地公园溪流鱼类群落的时空格局.动物学研究,2013,34(4):417- 428.
    [55] Omernik J M.Perspectives on the nature and definition of ecological regions.Environmental Management,2004,34(S1):S27-S38.
    [56] Wang L Z,Seelbach P W,Hughes R M.Introduction to landscape influences on stream habitats and biological assemblages//Hughes R M,Wang L Z,Seelbach P W,eds.Landscape Influences on Stream Habitats and Biological Assemblages.Bethesda,Maryland:American Fisheries Society,2006:1- 23.
    [57] Grenouillet G,Pont D,Hérissé C.Within-basin fish assemblage structure:the relative influence of habitat versus stream spatial position on local species richness.Canadian Journal of Fisheries and Aquatic Sciences,2004,61(1):93- 102.
    [58] Grant E H C,Lowe W H,Fagan W F.Living in the branches:population dynamics and ecological processes in dendritic networks.Ecology Letters,2007,10(2):165- 175.
    [59] Smith T A,Kraft C E.Stream fish assemblages in relation to landscape position and local habitat variables.Transactions of the American Fisheries Society,2005,134(2):430- 440.
    [60] 李艳慧,严云志,朱仁,周科,储玲,万安,汪小三.基于河流网络体尺度的皖河河源溪流鱼类群落的空间格局.中国水产科学,2014,21(5):988- 999.
    [61] Fu C Z,Wu J H,Chen J K,Wu Q H,Lei G C.Freshwater fish biodiversity in the Yangtze River basin of China:patterns,threats and conservation.Biodiversity & Conservation,2003,12(8):1649- 1685.
    [62] Kang B,He D M,Perrett L,Wang H Y,Hu W X,Deng W D,Wu Y F.Fish and fisheries in the Upper Mekong:current assessment of the fish community,threats and conservation.Reviews in Fish Biology and Fisheries,2009,19(4):465- 480.
    [63] Yan Y Z,Wang H,Zhu R,Chu L,Chen Y F.Influences of low-head dams on the fish assemblages in the headwater streams of the Qingyi watershed,China.Environmental Biology of Fishes,2013,96(4):495- 506.
    [64] Angermeier P L,Karr J R.Fish communities along environmental gradients in a system of tropical streams.Environmental Biology of Fishes,1983,9(2):117- 135.
    [65] Wang L Z,Lyons J,Kanehl P,Bannerman R.Impacts of urbanization on stream habitat and fish across multiple spatial scales.Environmental Management,2001,28(2):255- 266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700