用户名: 密码: 验证码:
应用剩余杂合体衍生群体定位水稻粒重粒形QTL
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Identification of QTL for Grain Weight and Grain Shape Using Populations Derived from Residual Heterozygous Lines of indica Rice
  • 作者:朱安东 ; 孙志超 ; 朱玉君 ; 张荟 ; 牛小军 ; 樊叶杨 ; 张振华 ; 庄杰云
  • 英文作者:ZHU ANDong;SUN Zhichao;ZHU Yujun;ZHANG Hui;NIU Xiaojun;FAN Yeyang;ZHANG Zhenhua;ZHUANG Jieyun;State Key Laboratory of Rice Biology/Chinese National Center for Rice Improvement, China National Rice Research Institute;College of Crop Science, Fujian Agriculture and Forestry University;Rice Research Institute, Fujian Academy of Agricultural Science;
  • 关键词:数量性状座位 ; 千粒重 ; 粒形 ; 剩余杂合体 ; 水稻
  • 英文关键词:quantitative trait locus;;1000-grain weight;;grain shape;;residual heterozygous line;;rice
  • 中文刊名:中国水稻科学
  • 英文刊名:Chinese Journal of Rice Science
  • 机构:中国水稻研究所水稻生物学国家重点实验室/国家水稻改良中心;福建农林大学作物科学学院;福建农业科学院水稻研究所;
  • 出版日期:2019-03-10
  • 出版单位:中国水稻科学
  • 年:2019
  • 期:02
  • 基金:国家自然科学基金资助项目(31521064);; 中央级公益性科研院所所基本业务费专项(2017RG001-2)
  • 语种:中文;
  • 页:52-59
  • 页数:8
  • CN:33-1146/S
  • ISSN:1001-7216
  • 分类号:S511
摘要
【目的】粒重粒形是影响水稻产量和品质的重要因素,由大量数量性状座位(QTL)控制,其作用变异极大,但以往研究主要着眼于效应大的QTL。本研究在剔除主效QTL影响的基础上,开展微效粒重粒形QTL分析。【方法】在前期研究基础上,从原群体挑选出1个剩余杂合体单株,构建了在主效QTL区间纯合、在其余区域中13个区间分离的群体,种植于浙江杭州和海南陵水,测定千粒重、粒长和粒宽。【结果】采用Windows QTL Cartographer2.5,检测到22个QTL,分布于10条染色体的12个区间,其中,10个区间在两地均呈显著作用,2个区间仅在杭州试验中呈显著作用。进一步从该群体筛选出1个只在其中4个QTL区间杂合的单株,自交构建分离群体,验证了这4个区间对粒重粒形的效应。【结论】排除主效QTL有利于提高微效粒重粒形QTL的检测功效;虽然微效QTL可能易受环境和遗传背景影响,但仍可具有稳定表现。这些结果为进一步开展粒重粒形QTL的精细定位、克隆和分子标记辅助选择奠定了基础。
        【Objective】Grain weight and grain shape are important factors influencing grain yield and quality in rice.There are quantitative traits controlled by a large number of quantitative trait loci(QTL) that vary greatly in effect, but not much attention has been paid to minor QTL. This study was conducted to detect minor QTL for grain weight and shape in the absence of major-QTL segregation. 【Method】 Following results of a previous QTL mapping study, a residual heterozygous plant was identified from the original population. The new population derived was homozygous in regions where major QTL for grain weight and shape were detected in the previous study, but segregated in 13 segments of other genomic regions. The population was planted in Hangzhou, Zhejiang and Lingshui, Hainan. Thousand-grain weight, grain length and grain width were tested and used for QTL analysis using Windows QTL Cartographer 2.5.【Result】A total of 22 QTL were detected, distributing on 12 intervals of 10 chromosomes. Ten of them were significant in both locations, and the other two were detected in Hangzhou only. One plant that was only heterozygous in four of the12 QTL regions was identified, from which one new population was constructed and tested. The QTL effects of the four regions were well validated. 【Conclusion】Our results indicate that the power of detecting minor QTL could be efficiently increased by eliminating the influence of major-QTL segregation. It is also suggested that minor QTL could have a stable effect though it is believed that they are generally subjected to large influence of the genetic background and environmental conditions. Our results also lay a foundation for fine mapping, cloning and marker-assisted selection of minor QTL for grain weight and grain shape in rice.
引文
[1]李一博,赵雷.水稻品质性状的遗传改良及其关键科学问题.生命科学,2016,28(10):1168-1179.Li Y B,Zhao L.Genetic improvement and key scientific questions of grain quality traits in rice.Chin Sci Bull,2016,28(10):1168-1179.(in Chinese with English abstract)
    [2]Li N,Xu R,Li Y.Control of grain size in rice.Plant Reprod,2018,31(3):237-251.
    [3]Yu J,Xiong H,Zhu X,Zhang H,Li H,Miao J,Wang W,Tang Z,Zhang Z,Yao G,Zhang Q,Pan Y,Wang X,Rashid M A R,Li J,Gao Y,Li Z,Yang W,Fu X,Li Z.Os LG3 contributing to rice grain length and yield was mined by Ho-LAMap.BMC Biol,2017,15(1):28.
    [4]Hu Z,Lu S J,Wang M J,He H,Sun L,Wang H,Liu X H,Jiang L,Sun J L,Xin X,Kong W,Chu C,Xue H W,Yang J,Luo X,Liu J X.A novel QTL q TGW3 encodes the GSK3/SHAGGY-like kinase Os GSK5/Os SK41 that interacts with Os ARF4 to negatively regulate grain size and weight in rice.Mol Plant,2018,11(5):736-749.
    [5]Yu J,Miao J,Zhang Z,Xiong H,Zhu X,Sun X,Pan Y,Liang Y,Zhang Q,Rashid M A R,Li J,Zhang H,Li Z.Alternative splicing of Os LG3b controls grain length and yield in japonica rice.Plant Biotechnol J,2018,16(9):1667-1678.
    [6]Zhao D S,Li Q F,Zhang C Q,Zhang C,Yang Q Q,Pan L X,Ren X Y,Lu J,Gu M H&Liu Q Q.GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality.Nat Commun,2018,9(1):1240.
    [7]Li Y,Fan C,Xing Y,Jiang Y,Lou L,Sun L,Shao D,Xu C,Li X,Xiao J,He Y,Zhang Q.Natural variation in GS5plays an important role in regulating grain size and yield in rice.Nat Genet,2011,43:1266-1269.
    [8]Noriko K,Masayuki K,Kei K,Takuya K,Tsutomu N,Yuji H,Itsuro T,Takashi S,Kiyoaki K.Identification of quantitative trait loci for rice grain quality and yield-related traits in two closely related Oryza sativa L.subsp.japonica cultivars grown near the northernmost limit for rice paddy cultivation.Breed Sci,2017,67:191-206.
    [9]Dong Q,Zhang Z H,Wang L L,Zhu Y J,Fan Y Y,Mou T M,Ma L Y,Zhuang J Y.Dissection and fine-mapping of two QTL for grain size linked in a 460-kb region on chromosome 1 of rice.Rice,2018,11:44.
    [10]Yamamoto T,Yonemaru J,Yano M.Towards the understanding of complex traits in rice:Substantially or superficially?DNA Res,2009,16(3):141-154.
    [11]Takai T,Ikka T,Kondo K,Nonoue Y,Ono N,Arai-Sanoh Y,Yoshinaga S,Nakano H,Yano M,Kondo M,Yamamoto T.Genetic mechanisms underlying yield potential in the rice high-yielding cultivar Takanari,based on reciprocal chromosome segment substitution lines.BMC Plant Biol,2014,14(1):295.
    [12]Nagata K,Ando T,Nonoue Y,Mizubayashi T,Kitazawa N,Shomura A,Matsubara K,Ono N,Mizobuchi R,Shabaya T,Ogisotanaka E,Hori K,Yano M,Fukuoka S.Advanced backcross QTL analysis reveals complicated genetic control of rice grain shape in a japonica×indica cross.Breed Sci,2015,65(4):308-318.
    [13]Ye H,Foley M E,Gu X Y.New seed dormancy loci detected from weedy rice-derived advanced populations with major QTL alleles removed from the background.Plant Sci,2010,179(6):612-619.
    [14]Xu F F,Sun C X,Huang Y,Chen Y L,Tong C,Bao J S.QTL mapping for rice grain quality:A strategy to detect more QTLs within sub-populations.Mol Breed,2015,35(4):105.
    [15]Wang Z,Chen J Y,Zhu Y J,Fan Y Y,Zhuang J Y.Validation of q GS10,a quantitative trait locus for grain size on the long arm of chromosome 10 in rice(Oryza sativa L.).J Integr Agric,2017,16(1):16-26.
    [16]Sun Z C,Zhu Y J,Chen J Y,Zhang H,Zhang Z H,Niu XJ,Fan Y Y,Zhuang J Y.Minor-effect QTL for heading date detected in crosses between indica rice cultivar Teqing and near isogenic lines of IR24.Crop J,2018,6(3):291-298.
    [17]Zhang H W,Fan Y Y,Zhu Y J,Chen J Y,Yu S B,Zhuang J Y.Dissection of the q TGW1.1 region into two tightly-linked minor QTLs having stable effects for grain weight in rice.BMC Genet,2016,17(1):98.
    [18]Zheng K L,Huang N,Bennett J,Khush G S.PCR-based marker-assisted selection in rice breeding//IRRIDiscussion Paper Series No.12.Manila,Los Banos,Philippines:International Rice Research Institute,1995.
    [19]Chen X,Temnykh S,Xu Y,Cho Y G,Mc Couch S R.Development of a microsatellite framework map providing genome-wide coverage in rice(Oryza sativa L.).Theor Appl Genet,1997,95(4):553-567.
    [20]Lander E S,Green P,Abrahamson J,Barlow A,Daly M J,Lincoln S E,Newberg L A.MAPMAKER:An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations.Genomics,1987,1(2):174-181.
    [21]Wang S,Basten C J,Zeng Z B.Windows QTLCartographer 2.5.Raleigh,NC,USA:Department of Statistics,North Carolina State University,2012.
    [22]McCouch S R,CGSNL.Gene nomenclature system for rice.Rice,2008,1(1):72-84.
    [23]Huang N,Parco A,Mew T,Magpantay G,Mc Couch S,Guiderdoni E,Xu J,Subudhi P,Angeles E R,Khush G S.RFLP mapping of isozymes,RAPD and QTLs for grain shape,brown planthopper resistance in a double haploid rice population.Mol Breed,1997,3(2):105-113.
    [24]邢永忠,谈移芳,徐才国,华金平,孙新立.利用水稻重组自交系群体定位谷粒外观性状的数量性状基因.植物学报,2001,43(8):840-845.Xing Y Z,Tan Y F,Xu C G,Hua J P,Sun X L.Mapping quantitative trait loci for grain appearance traits of rice using a recombinant inbred line population.Acta Bot Sin,2001,43(8):840-845.(in Chinese with English abstract)
    [25]Li J X,Yu S B,Xu C G,Tan Y F,Gao Y J,Li X H,Zhang Q.Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid.Theor Appl Genet,2000,101:248-254.
    [26]姜恭好,徐才国,李香花,何予卿.利用双单倍体群体剖析水稻产量及其相关性状的遗传基础.遗传学报,2004,31(1):63-72.Jiang G H,Xu C G,Li X H,He Y Q.Characterization of the genetic basis for yield and its component traits of rice revealed by doubled haploid population.Acta Genet Sin,2004,31(1):63-72.(in Chinese with English abstract)
    [27]王军,朱金燕,周勇,杨杰,范方军,李文奇,梁国华,仲维功.基于染色体单片段代换系的水稻粒形QTL定位.作物学报,2013,39(4):617-625.Wang J,Zhu J Y,Zhou Y,Yang J,Fan F J,Li W Q,Liang G H,Zhong W G.Mapping of QTLs for grain shape using chromosome single segment substitution lines in rice(Oryza sativa L.).Acta Agron Sin,2013,39(4):617-625.(in Chinese with English abstract)
    [28]林荔辉,吴为人.水稻粒型和粒重的QTL定位分析.分子植物育种,2003,1(3):337-342.Lin L H,Wu W R.Mapping of QTLs underlying grain shape and grain weight in rice.Mol Plant Breed,2003,1(3):337-342.(in Chinese with English abstract)
    [29]Liang Y S,Zhan X D,Gao Z Q,Lin Z C,Yang Z L,Zhang Y X,Shen X H,Cao L Y,Cheng S H.Mapping of QTLs associated with important agronomic traits using three populations derived from a super hybrid rice Xieyou9308.Euphytica,2012,184(1):1-13.
    [30]Marathi B,Guleria S,Mohapatra T,Parsad R,Mariappan N,Kurungara V K,Atwal S S,Prabhu K V,Singh N K,Singh A K.QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice(Oryza sativa L.).BMC Plant Biol,2012,12:137.
    [31]Gao F Y,Zeng L H,Qiu L,Lu X J,Ren J S,Wu X T,Su X W,Gao Y M,Ren G J.QTL mapping of grain appearance quality traits and grain weight using a recombinant inbred population in rice(Oryza sativa L.).JIntegr Agric,2016,15(8):1693-1702.
    [32]Gao Y,Zhu J,Song Y,He C,Shi C,Xing Y.Analysis of digenic epistatic effects and QE interaction effects QTLcontrolling grain weight in rice.J Zhejiang Univ Sci,2004,5(4):371-377.
    [33]Kang Y J,Shim K C,Lee H S,Jeon Y A,Kim S H,Kang J W,Yun Y T,Park I K,Ahn S N.Fine mapping and candidate gene analysis of the quantitative trait locus gw8.1 associated with grain length in rice.Genes&Genom,2018,40(4):389-397.
    [34]Tian F,Li D J,Fu Q,Zhu Z F,Fu Y C,Wang X K,Sun CQ.Construction of introgression lines carrying wild rice(Oryza rufipogon Griff.)segments in cultivated rice(Oryza sativa L.)background and characterization of introgressed segments associated with yield-related traits.Theor Appl Genet,2006,112(3):570-580.
    [35]张亚东,张颖慧,董少玲,陈涛,赵庆勇,朱镇,周丽慧,姚姝,赵凌,于新,王才林.特大粒水稻材料粒型性状QTL检测.中国水稻科学,2013,27(2):122-128.Zhang Y D,Zhang H Y,Dong S L,Chen T,Zhao Q Y,Zhu Z,Zhou L H,Yao S,Zhao L,Yu X,Wang C L.Identification of QTL for rice grain traits based on extra-large grain material.Chin J Rice Sci,2013,27(2):122-128.(in Chinese with English abstract)
    [36]Hittalmani S,Shashidhar H E,Bagali P G,Huang N,Sidhu J S,Singh V P,Khush G S.Molecular mapping of quantitative trait loci for plant growth,yield and yield related traits across three diverse locations in a doubled haploid rice population.Euphytica,2002,125(2):207-214.
    [37]Li S,Cui G,Guan C,Wang J,Lian G.QTL detection for rice grain shape using chromosome single segment substitution lines.Rice Sci,2011,18(4):273-278.
    [38]杨占烈,戴高兴,翟荣荣,林泽川,王会民,曹立勇,程式华.多环境条件下超级杂交稻协优9308重组自交系群体粒形性状QTL定位.中国水稻科学,2013,27(5):482-490.Yang Z L,Dai G X,Zhai R R,Lin Z C,Wang H M,Cao L Y,Cheng S H.QTL analysis of rice grain shape traits by using recombinant inbred lines from super hybrid rice Xieyou 9308 in multi-environments.Chin J Rice Sci,2013,27(5):482-490.(in Chinese with English abstract)
    [39]Oh J M,Balkunde S,Yang P,Yoon D B,Ahn S N.Fine mapping of grain weight QTL,tgw11 using near isogenic lines from a cross between Oryza sativa and O.grandiglumis.Genes&Genom,2011,33(3):259-265.
    [40]周梦玉,宋昕蔚,徐静,付雪,李婷,朱雨晨,肖幸运,毛一剑,曾大力,胡江,朱丽,任德勇,高振宇,郭龙彪,钱前,吴明国,林建荣,张光恒.籼稻C84和粳稻春江16B重组自交系遗传图谱构建及籽粒性状QTL定位与验证.中国水稻科学,2018,32(3):207-218.Zhou M Y,Song X W,Xu J,Fu X,Li T,Zhu Y C,Xiao X Y,Mao Y J,Zeng D L,Hu J,Zhu L,Ren D Y,Gao ZY,Guo L B,Qian Q,Wu M G,Lin J R,Zhang G H.Construction of genetic map and mapping and verification of grain traits QTLs using recombinant inbred lines derived from a cross between indica C84 and japonica CJ16B.Chin J Rice Sci,2018,32(3):207-218.(in Chinese with English abstract)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700