用户名: 密码: 验证码:
锂辉石单矿物中锂含量ICP-MS和ICP-AES分析方法准确性对比研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantification accuracy study of lithium in spodumene between ICP-MS and ICP-AES
  • 作者:谭细娟 ; 梁婷 ; 张泽 ; 周义 ; 王艺茜 ; 凤永刚 ; 三金柱
  • 英文作者:TAN Xijuan;LIANG Ting;ZHANG Ze;ZHOU Yi;WANG Yiqian;FENG Yonggang;SAN Jinzhu;College of Earth Sciences andLand Resources, Chang'an University;Laboratory of Mineralization and Dynamics, Chang'an University;Xinjiang Nonferrous Geological Exploration Bureau;
  • 关键词:锂辉石单矿物 ; 锂含量测定 ; ICP-MS ; ICP-AES ; 方法准确性对比
  • 英文关键词:spodumene mineral;;lithium determination;;ICP-MS;;ICP-AES;;accuracy comparing study
  • 中文刊名:地质学报
  • 英文刊名:Acta Geologica Sinica
  • 机构:长安大学地球科学与资源学院;长安大学成矿作用及其动力学实验室;新疆有色地质勘探局;
  • 出版日期:2019-06-15
  • 出版单位:地质学报
  • 年:2019
  • 期:06
  • 基金:国家重点研发计划项目“深地资源勘查开采”专项“锂能源金属矿产基地深部探测技术示范”项目所属课题“我国锂能源金属成矿规律、靶区优选及异常查证”(课题编号2017YFC0602701)资助的成果
  • 语种:中文;
  • 页:359-365
  • 页数:7
  • CN:11-1951/P
  • ISSN:0001-5717
  • 分类号:P575;P618.71
摘要
锂是我国重要的战略金属资源,锂辉石是伟晶岩型锂矿床中最重要的工业矿物之一。有效、合理圈定锂矿体、评价锂矿床的开发利用价值、深入研究锂矿成矿机制,锂元素含量的准确测定具有重要意义。本文以新疆维吾尔族自治区的卡鲁安、大红柳滩和镜儿泉锂矿床中锂辉石单矿物为研究对象,首次开展了伟晶岩型锂矿床中锂辉石单矿物锂元素ICP-MS和ICP-AES分析方法准确性对比研究。本文选取三个锂矿床共22件具有代表性的锂辉石单矿物样品,采用高压密闭湿法消解法,对ICP-MS和ICP-AES分析方法测定锂元素的工作条件(包括雾化气流速、辅助气流速、等离子体流速等)进行了详细探讨。测定结果表明,针对同一份锂辉石单矿物消解溶液,ICP-MS分析方法得到的锂元素存在系统性误差,较ICP-AES分析结果,结果偏差约2.8倍,锂元素含量损失近64.8%。同时进一步对ICP-MS测定锂元素结果的系统误差可能来源作了分析,提出目前技术条件下ICP-MS溶液分析方法用于测定锂辉石单矿物的锂元素含量尚不可取,宜采用操作简单、耐盐度高、无需内标校正的ICP-AES分析技术。
        Lithium is one of the well-known strategy metal resources in China. Among various minerals in lithium deposits, spodumene is the major mineral showing great commercial value. For effective estimation of lithium levels and deep investigation of the mining process of lithium deposits, accurate lithium determination is of pivotal significance. In this present work, with spodumene mineral in Kaluan, Dahongliutan and Jingerquan lithium deposits of Xinjiang province as the research subject, we first study the analytical accuracies of ICP-MS and ICP-AES for lithium in detail.Herein, 22 representative spodumene samples from the three lithium mining zones are decomposed using high-pressure closed acidic digestion method and taken for lithium analysis by ICP-MS and ICP-AES.The operating parameters,such as nebulizer gas flow rate, auxiliary gas flow rate and plasma gas flow rate, are well studied.With lithium quantification in the same digestion solution analyzed by both methods, results reveal that there exists systematical error of ICP-MS technique, showing an error coefficient of around 2.8 to the data that from ICP-AES analytical method.Furthermore, the possible reasons causing the systematic bias of ICP-MS technique are fully discussed,and it can be inferred that ICP-MS solution analysis, which has analytical loss of approximately 64.8% for lithium in spodumene samples, isn't recommended in the study of lithium minerals, whilst ICP-AES is an attractive technique with merits of higher accuracy, internal standard free and easier operations.
引文
Agatemor C,Beauchemin D.2011.Matrix effects in inductively coupled plasma mass spectrometry:A review.AnalyticaChimica Acta,706:66~83.
    Bau M,Schmidt K,Pack A,Bende l V,Kraemer D.2018.The European Shale:An improved data set for normalisation of rare earth element and yttrium concentrations in environmental and biological samples from Europe.Applied Geochemistry,90:142~149.
    Brenan J M,Neroda E,Lundstrom C C,Shaw H F,Ryerson F J,Phinney D L.1998.Behaviour of boron,beryllium,and lithium during melting and crystallization:constraints from mineral-melt partitioning experiments.Geochimica & Cosmochimica Acta,62:2129~2141.
    Brenner I B,Zander A T.2000.Axially and radially viewed inductively coupled plasmas–A critical review.Spectrochimica Acta B:Atomic Spectroscopy,55:1195~1240.
    Chan L H,Kastner M.2000.Lithium isotopic compositions of pore fluids and sediments in the Costa Rica subduction zone:implications for fluid processes and sediment contribution to the arc volcanoes.Earth and Planetary Science Letters,183:275~290.
    Date A R,Gray A L.1989.Applications of ICPMS.Blackie:Glasgow.
    Deer W A,Howie R A,Zussman J.1978.Single-chain silicates,In:Rock-forming minerals (2nd edition),pp.527~544.
    Derry D R.1950.Lithium-bearing pegmatites in northern Quebec.Economic Geology,45:95~104.
    Gulson B,Kamenov G D,Manton W,Rabinowitz M.2018.Concerns about quadrupole ICP-MS lead isotopic data and interpretations in the environment and health fields.International Journal of Environmental Research and Public Health,15:723.
    Hu Shenghong,Chen Aifang,Lin Shoulin,Yuan Honglin,Gao Shan.2000.ICP-MS analytical research into 40 trace and ultra-trace elements in geological samples.Journal of China University of Geosciences,25:186~190.
    Jarvis K E,Gray A L,Houk R S.1992.Handbook of ICP-MS.Blackie:Glasgow.
    Li J K,Zou T R,Liu X F,Wang D H,Ding X.2015.The metallogenetic regularities of lithium deposits in China.Acta Geology Sinica (English Edition),89:652~670.
    Li Xianhua,Liu Ying,Tu Xianglin,Hu Guangqian,ZengWen.2002.Precise determination of chemical compositions in silicate rocks using ICP-AES and ICP-MS:A comparative study of samples digestion techniques of alkali fusion and acid dissolution.Geochimica,31:289~294.
    Lin Daze.2004.Use of lithium and its resource exploitation.China Safety Science Journal,14:72~76.
    Liu CQ,Zhang H.2005.The lanthanide tetrad effect in apatite from the Altay No.3 pegmatite,Xingjiang,China:an intrinsic feature of the pegmatite magma.Chemical Geology,214:61~77.
    Liu Lijun,Wang Denghong,Liu Xifang,Li Jiankang,Dai Hongzhang,Yan Weidong.2017.The main types,distribution features and present situation of exploration anddevelopment for domestic and foreign lithium mine.Geology in China,44:263~277.
    London D.2018.Ore-forming processes within granitic pegmatites.Ore Geology Reviews,101:349~383.
    Lu G,Winkler W,Rahn M,Quadt A,Willett S D.2018.Evaluating igneous sources of the Taveyannaz formation in the Central Alps by detrital zircon U-Pb age dating and geochemistry.Swiss Journal of Geosciences,111:399~416.
    Lu Yongxiang.2014.Review and prospect of clean,renewable energy utilization.Science & Technology Review,32:15~26.
    Mounteney I,Burton A K,Farrant A R,Watts M J,Kemp S J,Cook J M.2018.Heavy mineral analysis by ICP-AES a tool to aid sediment provenancing.Journal of Geochemical Exploration,184:1~10.
    Olesik J.1991.Elemental analysis using ICP-OESand ICP-MS.Analytical Chemistry,63:12A~21A.
    Peng C Y,He M,Chen B L,Huang L J,Hu B.2017.Magnetic sulfur-doped porous carbon for preconcentration of trace mercury in environmental water prior to ICP-MS detection.Analyst,142:4570~4579.
    Rezaaiyaan R,Hieftje G M.1985.Analytical characteristics of a low-flow,low-power inductively coupled plasma.Analytical Chemistry,57:412~415.
    Riisom M,Gammelgaard B,Lambert I H,Stürup S.2018.Development and validation of an ICP-MS method for quantification of total carbon and platinum in cell samples and comparison of open-vessel and microwave-assisted acid digestion methods.Journal of Pharmaceutical and Biomedical Analysis,158:144~150.
    Ryan J G,Langmuir C H.1987.The systematics of lithium abundances in young volcanic rocks.Geochimica&Cosmochimica Acta,51:1727~1741.
    SeyfriedJr W E,Chen X,Chan L.1998.Trace element mobility and lithium isotope exchange during hydrothermal alteration of seafloor weathered basalt:An experimental study at 350℃,500 bars-implications for fluid processes at shallow depths in subduction zones.Geochimica & Cosmochimica Acta,62:949~960.
    Slaets S,Adams F,Pereiro I R,?obiński R.1999.Optimization of the coupling of multicapillary GC with ICP-MS for mercury speciation analysis in biological materials.Journal of Analytical Atomic Spectrometry,14:851~857.
    Sun Jianzhi.2009.Recent progress of determination of lithium.Physical Testing and Chemical Analysis Part B:Chemical Analysis,45:1240~1244.
    Sun X H,Luan Y,Tang H S,Tan X J.2018.Petrogenesis of rhyolite at Kalatage in the Eastern Tianshan,Northwest China:Evidences from geochemistry,zircon U–Pb geochronology,and Hf isotopes.Geological Journal,53:163~173.
    Tan S H,Horlick G.1987.Matrix-effect observations in inductively coupled plasma mass spectrometry.Journal of Analytical Atomic Spectrometry,2:745~763.
    Tan X J,Wang Z M.2018.A general high-pressure closed acidic decomposition method of rock samples for trace element analysis using inductively coupled plasma mass spectrometry.Journal of Analytical Chemistry,Accepted for publication.
    Tan Xiuming,Zhang Yongxing,Zhang Lizhen,Zhao Hengqin,Zhang Xiufeng,Yin Yuejun,Ma Yameng.2017.Utilization status of lithium resources and development suggestions.Conservation and Utilization of Mineral Resources,5:87~92.
    Xing Xia,Xu Jinli,Liu Bin,Xing Chen,Liu Yaxuan,Bai Jinfeng,Zhang Qin.2016.The application of inductively coupled plasma-atomic emissionspectrometry (ICP-AES) to the analysis of geological samples.Geophysical & Geochemical Exploration,40:998~1006.
    Xu Shiqi,Tu Qijun.2016.Metallogenicregularity and prospecting direction for geological survey of rare metals of Xinjiang.Geological Review,62(S1):415~416.
    Xu Xiuping,Li Bo,Hua Shaoguang.2016.Determination of lithium oxide in spodumene by inductively coupled plasma-atomic emission spectrometry.Metal Mine,5:113~117.
    Xu Zhiqin,Wang Rucheng,Zhao Zhongbao,Fu Xiaofang.2018.On the structural backgrounds of the large scale “hard rock type” lithium ore belts in China.Acta GeologicaSinica,82:1091~1106.
    Yan X Y,Dai S F,Graham I T,He X,Shan K H,Liu X.2018.Determination of Eu concentrations in coal,fly ash and sedimentary rocks using a cation exchange resin and inductively coupled plasma mass spectrometry (ICP-MS).International Journal of Coal Geology,191:152~156.
    Yin Ming,Fu Tingfa,Yuan Xuanhui.1990.A study on the main operating parameters used in ICP-MS.Rock and Mineral Analysis,9:8~14.
    Yoshida S,Muramatsu Y,Tagami K,Uchida S.1996.Determination of major and trace elements in Japanese rock reference samples by ICP-MS.International Journal of Environmental Analytical Chemistry,63:195~206.
    Zhu Jinrong,Gong Minggang.1995.Determination of major,minor and trace elements in spodumenite by ICP-AES.Rock and Mineral Analysis,14:180~184.
    胡圣虹,陈爱芳,林守麟,袁洪林,高山.2000.地质样品中40个微量、痕量、超痕量元素的ICP-MS分析研究.中国地质大学学报,25:186~190.
    李献华,刘颖,涂湘林,胡光黔,曾文.2002.硅酸盐岩石化学组成的ICP-AES和ICP-MS准确测定:酸溶与碱熔分解样品方法的对比.地球化学,31:289~294.
    林大泽.2004.锂的用途及其资源开发.中国安全科学学报,14:72~76.
    刘丽君,王登红,刘喜方,李建康,代鸿章,闫卫东.2017.国内外锂矿主要类型、分布特点及勘查开发现状.中国地质,44:263~277.
    路甬祥.2014.清洁、可再生能源利用的回顾与展望.科技导报,32:15~26.
    孙建之.2009.锂的测定方法的进展.理化检测-化学分册,45:1240~1244.
    谭秀民,张永兴,张利珍,赵恒勤,张秀峰,伊跃军,马亚梦.2017.能源金属锂资源开发利用现状及发展建议.矿产保护与利用.5:87~92.
    邢夏,徐进力,刘彬,邢辰,刘亚轩,白金峰,张勤.2016.电感耦合等离子体发射光谱法在地质样品分析中的应用进展.物探与化探,40:998~1006.
    徐仕琪,涂其军.2016.新疆稀有金属成矿规律与勘查找矿方向.地质评论,62(S1):415~416.
    徐修平,李波,华少广.2016.电感耦合等离子体发射光谱法测定锂辉石中氧化锂.金属矿山,5:113~117.
    许志琴,王汝成,赵中宝,付小方.2018.讨论中国大陆“硬岩型”大型锂矿带的构造背景.地质学报,82:1091~1106.
    尹明,符廷发,袁玄晖.1990.等离子体质谱的主要工作参数研究(I).岩矿测试,9:8~14.
    朱金荣,宫明岗.1995.电感耦合等离子体发射光谱法测定锂辉矿中的主次痕量元素.岩矿测试,14:180~184.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700