用户名: 密码: 验证码:
三峡库区典型流域藻类的演替、聚集与水华状态的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水华是水体严重富营养化的表现,“水华”暴发时大量浮游藻类聚集在水域表面,破坏了周围的环境,影响鱼类等水生生物的生存和人类对水的利用,所带来的危害很严重,尤其是对三峡水库这种大规模流域体系中的水环境危害极其严重。三峡水库形成后,库区内长江与次级河流的流速减缓、自净化能力降低、温差变小以及光照增强,从而在沿江两岸水域形成独特的消落带,在河口汇入段形成更平缓的回水区,这些都将直接影响藻类演替、增殖和聚集行为,进而成为三峡流域水华暴发的重要诱发因子。
     通过对三峡库区典型流域的长江和嘉陵江水体中藻类的特征和季节演替规律进行调查,发现2006年11月~2007年10月浮游藻类共7门,50属,108种及其变种。藻类种群构成中硅藻占绝对优势(51.8%),其次为绿藻和蓝藻,其他较少。硅藻细胞密度所占百分比相当高,春季嘉陵江水体中硅藻密度所占比例高于长江,秋季低于长江,其他季节差别不大;绿藻细胞密度所占比例较低,长江和嘉陵江分别不超过10.12%和10.71%,生长高峰时期均出现在春季;长江水体中蓝藻春、冬季节细胞密度所占比例最高,秋季所占比例最低(近似0%),嘉陵江蓝藻以春、夏季所占比例最高。
     针对三峡库区典型流域两江的浮游藻类的生长特点,本文结合实验室模拟的方法,探讨了三峡成库后主要环境因子(氮磷比、光照强度和流速)对藻类群落结构的演替和聚集行为的影响。在不同TN/TP和光照强度的静水表层中主要藻类为蓝、绿藻,优势种为蓝藻门的水华微囊藻,总体上蓝藻的聚集参数θ大于绿藻;在流速大于0.03m·s-1的动态水体中蓝、绿藻聚集参数迅速下降,优势藻类不再明显。对水质的生态学评价结果表明:水华微囊藻聚集参数θ与生物多样性指数d拟合的可决系数R2在0.81以上,反映出优势藻聚集能力与水体环境质量的反比关系。作为水质污染和营养水平评价依据的指数d不能直接表征水华污染状态,因此,在参数θ的基础上构建了描述水华污染状态的函数G,将函数G应用于对实验结果和实际流域水华污染的评价,结果表明,水华状态函数G确实能有效和半定量刻划水华污染程度。
Algae bloom reflects the over eutrophication of water. When algal bloom outbreaks, phytoplankton cluster on the surface of water, jeopardizing the surrounding environment and endangering human beings’water consumption and the survival of fish and other aquatic organisms. It brought about serious damages, particularly to water environment of Three Gorges reservoir—the large-scale water in the basin system. After the Three-Gorges reservoir’s erection, the flow velocity of Yangtze River and branch rivers becoming slower, the self-clean capacity of the water body decreased, the temperature difference lessened and the light intensity strengthened, the water-level-fluctuating zones formed along both sides of the river and the more gentle backwater area formed in estuary abouchement section—all these will have a direct impact on algae succession, proliferation and clustering behavior, thereby becoming the important factor of algal bloom outbreak in the Three-Gorges reservoir.
     Based on studying the algae characteristics and seasonal succession laws of Three-Gorges reservoir area typical of the Yangtze River and Jialing River Basin water, the author found that there were 7 planktonic algae, 50 genera and 108 species (including varieties) from November 2006 to October 2007. In the composition of algae community, the Bacillariophyta has the absolute domination (51.8%), then are Cyanophyta and Chlorophyta, and the proportion of others, less. Bacillariophyta cell density percentage was quite high. The Bacillariophyta density of Jialing River water accounted for a higher proportion in spring and a lower proportion in autumn compared with Yangtze River and differences in other seasons were not obvious. The cell density proportion of Cyanophyta in Yangtze and the Jialing River, comparatively low, were not more than 10.12% and 10.71% respectively and the growth peak occurred in spring. Cell density percentage of Chlorophyta in Yangtze River both in spring and winter was the highest, and its proportion in autumn was the lowest (approximately 0%). Chlorophyta in Jialing River in spring and summer occupied the highest proportion.
     According to planktonic algae’s growth characteristics in Yangtze River and Jialing River Typical of Three Gorges reservoir area, the thesis, integrating laboratory simulation method, studied systematically the impact of the major environmental factors (ratio of nitrogen and phosphorus, light intensity and velocity) after the formation of Three Gorges reservoir on the succession of algae community structure and aggregation behavior. Chlorophyta and Cyanophyta are the main algae types in static water, regardless the levels of TN/TP ratio and light intensity, while the dominant algae species is the Microcystis flos-aquae of Chlorophyta. In general, the clustering parameterθof Chlorophyta is bigger than that of Cyanophyta. However, the clustering parameter of both Chlorophyta and Cyanophyta decreases rapidly and the dominancy of the Microcystis flos-aquae starts to disappear when the flow velocity in the dynamic water is over 0.03m·s-1. The ecological assessment of water quality reveals that for all cases the correlation coefficient of (R2) between th biodiversity index (d) and clustering parameter (θ) is greater than 0.81, and water quality is inversely proportional to the clustering ability of the domiant algae species. Since the index d is an assessment critcrion of water quality as well as the nutrient level, and cannot be directly used to evaluate algal bloom, a function (G) is constructed on the basis of the parameterθ. The function G is used to assess the lab data and the actual water pollution in the river. The results indicate that function G can effectively represent the state of algal bloom in a semi-quantitative way.
引文
[1] YABUNAKA K, HOSOMI M, MURAKAMI A. Novel application of a backpropagation artificial neural network model formulated to predict algal bloom [J]. Wat Sci Tech, 1997, 36(5):89-97.
    [2] GAMIN H. Freshwater algal blooms and their control: Comparison of the European and Australian Experience [J]. Journal of Environmental Management, 1997, 51:217-227.
    [3]卢大远,刘培刚,范天俞等.汉江下游突发/水华的调查研究[J].环境科学研究,2000,13(2):29-31.
    [4]陈汉辉.澳大利亚水华的控制和管理[J].环境导报,1995(5):32-33.
    [5] TANGDanLing. Insitu and satellite observations of a harmful algal bloom and water condition at the Pearl River estuary in late autumn 1998[J]. Harmful Algae, 2003(2):289-299.
    [6]郑建军,钟成华,邓春光.试论水华的定义[J].水资源保护, 2006, 22(5):45-48.
    [7]朱嘉燕.青虾池塘水华控制技术初探[J].科学养鱼, 1999, (9):19-19.
    [8] Zhang ZS, Mei ZP. Effects of human activities on the ecological changes of lakes in China [J]. Geo Journal, 1996, 40(1-2):17-24.
    [9]黄道孝,肖军华,裴承新,陈常英,陈冀胜.鱼腥藻毒素(Anatoxins)研究进展[J].中国海洋药物, 2004, 23(23):47-52.
    [10]刘永梅,刘永定,李敦海,沈银武,王海珍.滇池束丝藻水华毒性生物检测[J].水生生物学报, 2004, 28(2): 216-218.
    [11]徐海滨,严卫星.淡水湖泊微囊藻毒素的污染和毒理学研究[J].卫生研究, 2002, 31(6): 477-480.
    [12]宋立荣,李林,陈伟,甘南琴.水体异味及其藻源次生代谢产物研究进展[J].水生生物学报, 2004, 28(4):434-439.
    [13]殷守仁,徐立蒲.淡水浮游藻类与鱼体异味关系的初步研究[J].大连水产学院学报, 2003, 18(2):156-157.
    [14]王维一.水域水华对水处理等方面的影响[J].城市公用事业, 2003, 17(2): 23-24.
    [15]周云龙,于明.水华的发生、危害和防治[J].生物学通报, 2004, 39(6):11-14.
    [16]肖培弘.水华的种类及其识别判断[J].内陆水产, 2004, 29(2):29-29.
    [17]刘丽萍.滇池水华特征及成因分析[J].环境科学研究, 1999, 12(5):35-37.
    [18]杨清心.太湖水华成因及控制途径初探[J].湖泊科学, 1996, 8(1):67-74.
    [19]王海珍,刘永定,沈银武,肖邦定,刘永梅.云南漫湾水库甲藻水华生态初步研究[J].水生生物学报, 2004, 28(2):213-215.
    [20]冬卫.澳大利亚河流发生大型有毒蓝绿藻水华[J].海洋信息, 1993, (8):26-27.
    [21] Donnelly TH, Grace MR, Hart BT. Algal Blooms in the Darling-Barwon River, Australia[J]. Water, Air, & Soil Pollution, 1997, 99(1-4):487-496.
    [22]唐友尧,王桂荣.汉江“水华”成因分析及防治[J].重庆环境科学, 2001, 23(5):21-23.
    [23] Aharon O, Peter G, David AA, Eugene B, Boaz L. A bloom of Dunaliella parva in the Dead Sea in 1992: biological and biogeochemical aspects [J]. Hydrobiologia, 1995, 297(3):173-185.
    [24] Qi Y, Chen J, Wang Z, Xu N, Wang Y, Shen P, Lu S, Hodgkiss J[J]. Hydrobiologia, 2004, 512(1-3):209-214.
    [25] Simil? A. Spring development of a Chlamydomonas population in Lake Nimet?n, a small humic forest lake in southern Finland [J]. Hydrobiologia, 1998, 161(1):149-157.
    [26]吴生才等.太湖藻类抗逆性的初步研究[J].生态环境, 2004, 13(4):500-502.
    [27] Kyong H, Min-HO J, Gea-Jae J. Winter Stephanodiscus bloom development in the Nakdong River regulated by an estuary dam and tributaries. Hydrobiologia. 506-509(1-3):221-227.
    [28]杨清心.太湖水华成因及控制途径初探[J].湖泊科学, 1996,8(1):67-74.
    [29]高学庆,任久长.铜绿微囊藻营养动力学研究[J].北京大学学报:自然科学版,1994,30(4):461-469.
    [30]徐敏,程凯.环境因子对衣藻水华消长影响的初步研究.华中师范大学学报:自然科学版,2001,35(3):322-325.
    [31] Schofield O, Grzymski J, Bissett WP, Kirkpatrick GJ, Millie DF, Moline M, Roesler CS. Optical monitoring and forecasting systems for harmful algal blooms: possibility or pipe dream? [J]. Journal of Phycology, 1999, 35(6):1477-1496.
    [32] Recknagel F. ANNA-Artificial Neural Network model for predicting species abundance and succession of blue-green algae [J]. Hydrobiologia, 1997, 349(1-3):47-57.
    [33] Lin Q, Zhang Y, Nie Y, Guan Y. Detection of harmful algal blooms over the gulf of BOHAI SEA in China at visible and NEAR INFRARED(NIR) wavelengths of remote sensing[J]. Electromagnetic Waves and Applications, 2003, 17(6):861-871.
    [34]胡雯,杨世植. NOAA卫星监测巢湖蓝藻水华的试验分析[J].环境科学与技术, 2002, 25(1):16-18.
    [35] Mbeunkui F, Richaud C, Etienne A-L, Schmid R, Bachmann T. Bioavailable nitrate detection in water by an immobilized luminescent cyanobacterial reporter strain[J]. Applied Microbiology and Biotechnology, 2002, 60(3):306-312.
    [36]宁平,朱易.三氯化铁在滇池蓝藻爆发期除藻中的应用研究[J].农业环境保护, 2001, 20(5):348-350.
    [37]王宁,张强.金属元素调控在水华治理中的作用初探[J].岩石矿物学杂志, 2001,20(4):533-535.
    [38]石颖,马军.湖泊、水库的强化混凝除藻的试验研究[J].环境科学学报, 2001, 21(2):251-253.
    [39]高建宇.聚合氯化铝铁处理滇池水的研究简介[J].给水排水技术动态, 2004, 2: 32-33.
    [40]沈银武,刘永定,吴国樵,敖鸿毅,丘昌强.富营养湖泊滇池水华蓝藻的机械清除[J].水生生物学报, 2004, 28(2):131-136.
    [41]陈荷生,宋祥甫.太湖湖内综合治理技术[J].水利水电技术, 2002, 33(12):46-49.
    [42]崔光琦,温丽容,黄辉,阮振兆,李明顺,朱永中.富营养化水体微生物除藻试剂[J].环境科学与技术, 2002, 25(S1):1-2.
    [43]赵以军,石正丽.蓝藻病毒(噬藻体)的研究进展[J].中国病毒学, 1999, 14(2):100-105.
    [44]吴刚,席宇.溶藻细胞研究的最新进展[J].环境科学研究, 2002, 15(5):43-46.
    [45]史顺玉,刘永定,沈银武.细菌溶藻的初步研究[J].水生生物学报, 2004, 28(2):219-221.
    [46] Mun TK. Effect of Phototrophic Bacteria on Water Blooming [J]. Water Resources. 2003, 30(3):325-332.
    [47]陆开宏,晏维金.富营养化水体治理与修复的环境生态工程——利用明矾浆和鱼类控制桥墩水库蓝藻水华[J].环境科学学报, 2002, 22(6):732-737.
    [48]刘建康,谢平.用鲢鳙直接控制微囊藻水华的围隔试验和湖泊实践[J].生态科学, 2003, 22(3):193-198.
    [49]程开发.苦草净化鳗鱼塘水质的试验[J].环境科学学报, 1995, (9):34-34.
    [50]尹黎燕,黄家权,沈强,李敦海,刘永定.微囊藻毒素在沉水植物苦草中的积累[J].水生生物学报, 2004, 28(2):151-154.
    [51] Reynolds,C. S.. Phytoplankton periodicity: the interactions of form, function and environmental variability [J]. Freshwat.Biol. 1984, 14:111-142.
    [52]杜桂森等.官厅水库水体营养状况分析[J].湖泊科学,2004,16 (3):277-281.
    [53] Tilman,R., Kiealing,L., Sterner, T.E., Kilham,S.S., and Johnson, F.A. Green, bluegreen and diatom algae: Taxonomic differences in competitive availability for phosphorus, silicon, and nitrogen[J]. Arch. Hydrobiol, 1986, 106: 473-485.
    [54] Sommer, U., Gliwicz, Lampert W. and Duncan, A. The PEG-model of ceasonal succession of planktonic events in freshwaters [J]. Arch. Hydrobiol. 1986, 106: 422-477.
    [55] Smith, V. H., Effects of nitrogen and phosphorus ratios on nitrogen fixation in agricultural and pastoral ecosystems [J]. Biochemistry, 1992, 18:19-35.
    [56]况琪军,夏宜铮.太平湖水库的浮游藻类与营养型评价[J].应用生态学报,1992, 3(2):165-168.
    [57]潘俊敏,张宪孔.小球藻的光照适应[A].洪湖水体生物生产力综合开发及湖泊生态环境优化研究[C].北京:海洋出版社,1991,81-84.
    [58] Huisman, J. Jonker, R. R., Zonneveld, C., and Weissing J. W. Competition for light between phytoplankton species: experimental tests of mechanistic theory [J]. Ecology, 1999, 80:211-212.
    [59] Scheffer M, S., Rinaldi, A., Gragnani, L.R. Mur, and Van Nes, E. H. On the dominance of filamentous cyanobacteria in shallow, turbid lakes [J]. Science, 1997, 195:260-262.
    [60] Eloff, J. N., Steinitz, Y., and Shilo, M. Photooxidation of cyanobacteria in natural condition [J]. App. Environ Microbiol, 1976, 31:119-126.
    [61] Tilman, D. Resource competition between planktonic algae: An experimental and theoretical approach [J]. Ecology, 1997, 58:338-348.
    [62] Braarud, T. Cultivation of marine organization as a means of understanding environmental influendes on populations [M].‘Oceanography’, Amer. Ass. Adv. Sci., 1961, 271-298.
    [63] Semina, H. J. The size of phytoplankton cells in the Pacific Ocean [J]. Int, Revue. Ges. Hydrobiol, 1972, 57:177-205.
    [64]况琦军,夏宜铮,坂本充.酸化水体中的藻类研究[J].中国环境科学,1994,14(3).
    [65]刘建康.高级水生生物学[M].北京:科学出版社,1999.
    [66]王志红,崔福义等. pH与水库水富营养化进程的相关性研究[J].给水排水,2004,30(5).
    [67]刘培桐.环境学导论[M].北京:高等教育出版社,1985:104.
    [68]彭近新,陈慧君.水质富营养化与防治(第一版)[M].北京:中国环境科学出版社,1988: 24.
    [69] Horne A.J., Goldman C.R. Limnology (Second Edition) [M]. New York: McGraw-Hill, Inc., 1994.
    [70]郭怀成,孙延枫.滇池水体富营养化特征分析及控制对策探讨[J].地理科学进展, 2002 ,9 , (21) :500 - 505.
    [71]张均顺,沈志良.胶洲湾营养盐结构变化的研究[J].海洋与湖沼,1997 ,9(28) :529 - 535.
    [72]饶群,芮孝芳.富营养化机理及数学模拟研究进展.水文,2001,21(2).
    [73] Bulgakov, N. G., and Levich, A. P. The nitrogen: phosphorus ratio as a factor regulating phytoplankton community structure [J].Arch. Hydrobiol., 1999, 146:3-22.
    [74] Smith, V.H. Low nitrogen to phosphorus ratios favors dominance by blue-green algal biomass in lake phuplankton. Science, 1983, 221:669-671.
    [75] Olirik, K. Succession of phytoplankton in response to environmental factors in Lake Arreso, North Zealand, Denmark [J]. Scheiz. Z. Hydrol., 1980, 43:6-19.
    [76] Cleber C F and Giani A. seasonal variation in the diversity and species richness of phytopolankton in a tropical eutrophid reservoir [J]. Hydrobiologia,2001,445:165-174.
    [77] Fryshore. The bacitracins: properties, biosynthesis and fermentation [J]. In Vandamme EF(ed),Biotechnology of Industrial Antibiotics, Marcel Dekker, Inc Basel, 655—694.
    [78]林秋奇等.广东省大中型供水水库营养现状及浮游生物的响应[J].生态学报, 2003,23(6):1102-1108.
    [79]谭铁强,黄渤等.汉江枯水期藻类生长调查.环境与健康杂志, Vol.19, No.2, 136-137.
    [80]黄玉瑶.内陆水域污染生态学-原理与应用[M].北京:科学出版社,2001:135-156.
    [81]沈韫芬,章宗涉,龚循矩等.微型生物监测新技术[M].北京:中国建筑工业出版社,1990.
    [82] Kolkwitz, R., Marsson, M, Okologie der tierischen saprobien. Int. Rev. ges [J]. Hydrobiologia, 1909, (2):12-152.
    [83]林碧琴,谢淑琦.水生藻类与水体污染监测[M].沈阳:辽宁大学出版社,1988: 227.
    [84]津田松苗.污水生物学[M].北隆馆,1964.
    [85]王德铭.环境科学研究与进展.科学出版社,1980: 23-26.
    [86]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报, 2005, 25(3): 589~591.
    [87]中华人民共和国国家技术监督局,GB11894-89.中华人民共和国国家标准:水质总氮的测定——碱性过硫酸钾消解法.北京:中国标准出版社.
    [88]中华人民共和国国家技术监督局,GB11893-89.中华人民共和国国家标准:水质总磷的测定——钼酸铵分光光度法.北京:中国标准出版社.
    [89]章宗涉,黄祥飞.淡水浮游生物研究方法[M].北京:科学出版社,1991. 333~357.
    [90]陈琼.氮、磷对水华发生的影响[J].生物学通报, 2006,41(5):12~13.
    [91] Dokulil M T, Teubner K. Cyanobacterial dominance in lakes [J]. Hydrobiologia, 2000, 438:1~12.
    [92] Irene K E, Brunberg A K. The importance of shallow sediments in the recruitment of anabaena and aphanizomenon (Cyanophyceae) [J]. Journal of Phycology, 2004, 40: 831~836.
    [93] Reynold CS, Walsby AE. Water-blooms [J]. Biol Rev, 1975, 50:437~481.
    [94] Ganf GG, Oliver RL. Vertical separation of light and available nutrients as a factor causing replacement of green algae by blue-green algae in the plankton of a stratified lake[J]. J Ecol, 1982, 70:829~844.
    [95] Reynolds CS, Oliver RL, Walsby AE. Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments [J]. N Z J Mar Freshwater Res, 1987, 21:379~390.
    [96] Walsby AE. Gas vesicles [J]. Microbiol Mol Biol Rev, 1994, 58:94~144.
    [97] Oliver RL, Ganf GG. Freshwater blooms [A]. In: Whitton BA, Potts M (eds). The Ecology of Cyanobacteria[C]. Netherlands: Kluwer Academic Publishers, 2000, 149~194.
    [98] Bonner MP, Poulin M. Numerical modeling of the planktonic succession in a nutrient-rich reservoir; environmental and physiological factors leading to Microcystis aeruginosadominance [J]. Ecol Model, 2002, 156:93~112.
    [99]宋丽娟.重庆长江嘉陵江交汇段浮游藻类变化规律研究[D].重庆:重庆大学, 2006. 9~10.
    [100] Agusti S and Phlips E J. Light absorption by cyanobacteria: Implications of the colonial growth form [J]. Limnol Oceanogr, 1991, 37: 434-441.
    [101] Kromkamp J. Phosphorus uptake & photosynthesis by phosphate-limited cultures of the cyanobacterium Microcystis aeruginosa [J]. B r. Phycol J., 1989, 24: 347-355.
    [102] Sommer U. Comparison between steady and non-steady state competition: experiments with natural phytoplankton [J]. Limnol Oceanogr., 1985, 30: 335 -346.
    [103] Fujimoto N R. Nutrient-limited growth of Microcystis aeruignosa & Phormidium tenue and competition under various N: P supply ratios & temperatures [J]. Limnol Oceanogr., 1997, 42:250-256.
    [104]华锦彪,宗志祥.洋河水库“水华”发生的实验研究[J].北京大学学报(自然科学版),1994, 30(4): 480-481.
    [105]况琪军,周广杰,胡征宇.三峡库区藻类种群结构与密度变化及其与氮磷浓度的相关性分析[J].长江流域资源与环境, 2007,16(2): 234~235.
    [106]万蕾,朱伟,赵联芳.氮磷对微囊藻和栅藻生长及竞争的影响[J].环境科学, 2007,28(6):1230~1234.
    [107] Rier S T, Stevenson R J. Effects of light, dissolved organic carbon, and inorganic nutrients on the relationship between algae and beterotrophic bacteria in stream periphyton[J]. Hydrobiologia, 2002, 489:179~184.
    [108]焦世珺,钟成华,邓春光.浅谈流速对三峡库区藻类生长的影响[J].微量元素与健康研究, 2006, 23(2):48~49.
    [109]李崇明.三峡库区次级河流富营养化防治研究[R] .重庆:重庆市环境科学研究院. 2003.
    [110]刘永明,贾绍风,蒋良维等.三峡水库重庆段一级支流回水河段富营养化潜势研究[J].地理研究, 2003,22(1):67-72.
    [111]张运林,秦伯强.太湖水环境的演变及研究进展[J].上海环境科学, 2001, 20(6):263-264.
    [112]吴生才,陈伟民.太湖浮游植物生物量的周期性变化[J].中国环境科学, 2004,24(2):151-154.
    [113]朱喜,张扬文.梅梁湖水污染现状及防治对策[J].水资源保护, 2002,4:28-30.
    [114]陈荷生.东太湖水环境保护迫在眉睫[ J ] .水资源保护, 2000,61(3):17-21.
    [115]李文朝.浅水湖泊生态系统的多稳态理论及其应用[J ] .湖泊科学, 1997,9 (2):97-104.
    [116]陈文瑞.长江三角洲水资源可持续利用的对策[J ] .中国给水排水, 2001,17 (3):25-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700