用户名: 密码: 验证码:
火山碎屑岩岩性的测井识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要是采用贝叶斯判别分析的方法对海拉尔盆地乌尔逊凹陷的大磨拐组、南屯组和铜钵庙组的岩性识别。文中利用地质和录井的资料对海拉尔盆地的岩性的测井响应特征进行了归纳和总结。并且提取了井径好、岩性厚的层段做为判别岩性的样本。用马尔科夫链的转移矩阵做为贝叶斯判别方法的先验概率来确定岩性,以减少人为的因素的影响,并且也能和实际地质情况相结合。用C++编出贝叶斯判别岩性的程序,在结合马尔科夫链的转移概率矩阵来判别未知处的岩性。然后用卡奔软件呈现判别出的岩性的剖面图,用来和地质资料得对比,并统计了符合率。
The Hailar Basin, in northern part of the Inner Mongolia Autonomous Region and to the west side of the Da Hinggan mountains, was a Late Mesozoic-Paleogene basin, with the basement being Hercynides. The boundary faults to control the basin developing of NE- and NNE-strikings created. Only Urxun depression displays SN distributing, it created in Early Cretaceous, and overprinted by later deformations. Urxun depression is controlled by the fault of the west of Urxun, it is a large unsymmetrical fault-depression sag with strike-slip characteristics in Mesozoic-Cenozoic in Hailaer Basin, the area is 2350 km 2, the depression’s pose and develop is mainly controlled by NE and NW fault. The north of the basin is mainly controlled by NNE Urxun west fault, in north the east boundary fault is a little small, but its reverset is distinct, and growth time is early, the middle of sediment leans to a side of Urxun west fault. The geological structure in the south of the Urxun is different from the north of the Urxun, NW fault is its main boundary fault in the west side, is also named Urxun west fault south section, and its reverse is distinct. The fault of the east fault is not grown, and is also a large unsymmetrical fault-depression sag with strike-slip characteristic, we could divide Urxun depression into Urxun north fault, Urxun middle fault, Urxun sorth fault.
     and overprinted by later deformations. Urxun-Beier depression in Hailaer basin is the Mesozoic and Cenozoic basin are located in the Paleozoic orogenic belt in Inner Mongolia-Daxing′anling area.they are regarded as p rosperity in exploration.
     Bayesian analysis was used to identify the lithology of the Damoguaihe formation, Nantun formation and Tongbomiao formation in Hailaer Basin Urxun sag in the article. The area of Urxun sag is big, and the difference of diagenesis is also big. The main types of rock in the research region are: Sedimentary rocks, volcanic clastic sedimentary rocks, volcanic sedimentary rocks, volcanic rocks and lava. Rocks in the area also use the classification criteria of the sandstone, and tuff, melting guitar-tuff and pyroclastic tuff are subdivided into coarse grain tuff/ignimbrite/bedded tuff、granule tuff/ignimbrite/bedded tuff、silt tuff/ignimbrite/bedded tuff. according to the size of the volcanic rocks particles. Because of the thin layer of the lithology, some borehole wall collapses, these make vertical resolution of most of the logging methods are distorted, and the identification of lithology is difficult.
     By way of using the various logging data in being, Bayesian distinguish was used. Bayesian distinguish is a statistical method. It begins the probability distributing property of the variable, through density function estimate to complete the probability of the stylebook belong to one type. It bases on the rule of compartmentalizing m-dimension space, and compartmentalize m-dimension space to G subspaces, the subspaces between each other are not intersectant, afterward we judge which subspace the samples in it according to the rule. So compartmentalizing each m-dimension corresponds a distinguish rule and result. Due to the samples in one subspace also belong to other subspaces, so we may meet error distinguish. By way of reducing this phenomenon, we should make the samples in a subspace centralize this subspace as much as possible, and this subspace includes other samples as little as possible.
     In addition, the prior probability of Bayesian distinguish is determined by transferred matrix probability of Markov chain. As the prior probability of Bayesian distinguish knows little, and its foundation of normal mode is related with the method, the man-made factor is in existence, by way of reducing the man-made factor, and integrating with the actual geological information, I use the transferred matrix probability of Markov chain to decide the prior probability of Bayesian distinguish. Markov chain is a diverse geological statistical model. Using it to describe the geological statistical information could reflect the actual distribution of types of geology , its conversional continuity and randomicity. I take the asymmetry of the actual geological type and to make the geological statistical placed the model into account, I use the transferred matrix probability of Markov chain to describe the regional variable.
     I use c++ mode to complete the distinguish in the article. For each layer of this borehole, we can use the Bayesian distinguish to identify the lithology of the borehole that we do not get core. The program is the following: firstly we put the lithology model which has been distinguished to the program, then input the lithology samples which need to be distinguished, following we could distinguish the needed lithology after running the program of distinguish, at last, we use kaben softer to display the section chart, this could contrast with the lithology data of geology, and we also compute the according rate that Bayesian distinguish identify the lithology in term of layer, simultaneity we gives the instruction about according rate.
     Contrasted with the geological core data we could instruct: using Bayesian analysis to identify the lithology is got by layer in statistical method.Some wells of Bayesian analysis in the eastern of Urxun sag was used to identify the rate which is over 70 percent of lithology.
引文
[1] Hawlander H M. Diagenesis and resvoir potential of volcanogenic sandstones -Cretaceous of the Surat Basin,Australia[J].Sedimentary Geology,1990,66(3/4): 181~195.
    [2] Mark E M, John G M.Volcaniclastic deposits: implications for hydrocarbon exploration. In:Richard V, Fisher, Smith G A,eds. Sedimentation in volcanic settings[J].Society for Sedimentary Geology,Special Publication 1991,45:20~27.
    [3] Secmann U, Schere M.Volcaniclastics as potential hydrocarbon reservoirs [J]. Clay Minerals, 1984, 19(9):457~470.
    [4] Yuli Mitsuhata, Koichi Matsuo, Matato Minegishi.Magnetotelluric survey for exploration of a volcanicrock reservoir in the Yurihara oil and gas field,Japan[J].Geophysical Prospecing,1999,47(2):195~218.
    [5] Wang Petal Relationship Between Volcanic Facies and Volcanic Reservoirs in Songliao Basin[J].Oil Gas Geol, 2003,24(1):18~23.
    [6] Alberto Malinvemo. Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem[J].Geophysical Journal International,2002,151(3):675~688.
    [7] Amro Elfeki, Michel Dekking. A Markov Chain Model for Sub-surface Characterization:Theory and Applications[J].Mathe-matical Geology,2001 ,33 (5):568~589.
    [8] Wolf M et al.Faciolog-Automatic Electrofacies Determination.SPWLA 23rd annual Logging Symposium.1982.
    [9] Ffron.B.统计学基础的争论。应用数学与计算数学。1980,(4):69~81.原载Amer.Math Monthly.1987, 85(4):231~246.
    [10] Hunang,S,Y, Liang. T. C. Empirical Bayes Estimation of The Truncation Parameter with Lines Loss.Statistic Sinica.1997,(7):755~769.
    [11] Ring.R.S.A. Decision Theretic Approach.Mathematical Statistics.New York Academic Press, 1967:98~102.
    [12] Kiang, Melody Y. Extending the Kohonen Self-Organizing Map Networks for Clustering Analysis.Computational Statistics and Data Analysis. 2001.38(2) 161~180.
    [13] Yang Miinshen, Ko Chenghsiu. On A Class of Fuzzy C-Numbers Clustering Procedures for Fuzzy Data.Fuzzy Sets and Systems.1996,84(1):49~60。
    [14] 王维东。火成岩储层油气水层测井识别方法研究[D]。大庆石油学院硕士研究生学位论文,2005,1~2。
    [15] 郎东升。大庆油区火成岩储层识别综合研究[J]。隐蔽油气藏形成机理与勘探实践,2004:329~334。
    [16] 何琰,伍友佳,吴念胜。火山岩油气藏研究[J]。大庆石油地质与开发.,1998,18(4):6~14。
    [17] 陈建文.。一门新兴的边缘科学-火山岩储层地质学[J]。海洋地质动态,2002, 18(4):19~22。
    [18] 王拥军。深层火山岩气藏储层表征技术研究[D]。中国地质大学(北京)博士学位论文,2006:1~7。
    [19] 杨峰平。松辽盆地徐家围子断陷火山岩及天然气成藏研究[D]。中国地质大学(北京)博士学位论文,2005:1~5。
    [20] 邱家骧。火山岩相及其主要特征[J]。地质科技情报,1984(2):46~52。
    [21] 陶奎元,杨祝良,王力波,杨献忠。苏北闵桥玄武岩储油的地质模型[J]。地球科学—中国地质大学学报,1998,23(3):272~276。
    [22] 谢家莹,陶奎元,黄光昭。中国东南大陆中生代火山岩带的火山岩相类型[J]。火山地质与矿产,1994,15(4):44~51。
    [23] 赵澄林,孟卫工,金春爽等。辽河盆地火山岩与油气[M]。石油工业出版社,1999:15~22。
    [24] 赵澄林,陈丽华,涂强等。中国天然气储层[M]。北京:石油工业出版社,1999:191~207。
    [25] 赵澄林,刘孟慧,胡爱梅等。特殊油气储层[M]。北京:石油工业出版社,1997:1~45,96~101。
    [26] 陈全茂,李忠飞。辽河盆地东部凹陷构造及其含油气性分析[J]。北京:地质出版社,1998:1~156。
    [27] 杜贤樾,肖焕钦。渤海湾盆地火成岩油气藏勘探研究进展[J]。复式油气藏,1998,23(4):1~4。
    [28] 陈建文,王德发,张晓东。松辽盆地徐家围子断陷营城组火山岩相和火山机构分析[J]。地学前缘,2000,7(4):371~379。
    [29] 朱慧明,韩玉启。贝叶斯多元统计推断理论[M]。科学出版社,2006:1~6。
    [30] 朱占平。火山碎屑岩中粘土矿物的成岩作用特征-以海拉尔盆地贝尔凹陷为例[D]。吉林大学硕士学位论文,2005:9~12
    [31] 曾允孚,夏文杰主编。沉积岩石学[M]。地质出版社,1986:87~88
    [32] 黄晨。松辽盆地徐家围子断陷深层火山岩岩性、岩相的测井识别[D]。吉林大学硕士学位论文,2007:60~61。
    [33] 朱筱敏,信荃麟。马尔柯夫链法在建立沉积相模式中的应用[J]。沉积学报,1987,5(4):96~105。
    [34] 施仁杰.。马尔科夫链基础及其应用[M]。西安:西安电子科技大学出版社,1992:239~248。
    [35] 景毅,王世称等。马尔柯夫过程在地质学中的应用[M]。北京:地质出版社,1985,34~38。
    [36] 刘振峰,郝天珧,方辉。用 Markov 链模型随机模拟储层岩相空间展布[J]。石油学报,2005,26(5):57~60。
    [37] 何开华。马尔科夫链分析在新疆拜成亚格列组沉积相研究中的应用[J]。成都地质学院学报,1988,15(3):93~103。
    [38] 邵树勋。民和盆地窑街地区上侏罗统沉积相的马尔科夫链数学模拟[J]。沉积学报,1997,15(增刊):127~130。
    [39] 李仁平,匡有为。长江三角洲南通地区第四纪地层马尔柯夫链综合分析[J]。地球科学-中国地质大学学报,1989,14(2):213~219。
    [40] 刘振峰,郝天珧,杨长春。基于 Markov 链模型的储层岩相随机模拟[J]。地球物理学进展,2003,18(4):666~669。
    [41] 李汉林,赵永军。石油数学地质[M]。东营:石油大学出版社,1998,247~260。
    [42] 郭光裕。马尔科夫概型分析及其在地质研究中的应用[J]。地质与勘探, 1992,28(8):29~34。
    [43] 王继贤,刘业新。马尔柯夫链在测井相分析中的应用[J]。地球物理测井,1989,13(5):30~37。
    [44] 巢俊民。现在地理统计分析[M]。北京师范大学出版社,1991:232~240。
    [45] 许岩。海拉尔盆地火山碎屑岩、含钠铝石砂岩与普通砂岩的成岩作用及其比较研究[D]。吉林大学博士学位论文,2005:19~21。
    [46] 时孜伟。海拉尔盆地乌尔逊-贝尔凹陷岩石类型及测井响应[D]。吉林大学硕士学位论文,2007:8~9。
    [47] 綦敦科,吴海波,陈立英。徐家围子火山岩气藏储层测井响应特征[J]。测井技术,2002,26(1):52~54。
    [48] 代诗华,罗兴平,王军,姜淑云。火山岩储集层测井响应与解释方法[J]。新疆石油地质,1998,19(6):465~526。
    [49] 李春柏,张新涛,刘立,任延广,孟鹏。布达特群流体活动及其对火山碎屑岩的改造作用-以海拉尔盆地贝尔凹陷为例[J].吉林大学学报(地球科学版)。2006,36(2):221~226。
    [50] 王海燕,刘立,高玉巧,张新涛。海拉尔盆地贝尔凹陷南屯组火山碎屑岩成岩作用的讨论[J],世界地质。2005,24(3):219~224。
    [51] 冯翠菊,王敬岩,冯庆付。利用测井资料识别火成岩岩性的方法[J],大庆石油学院学报。2004,,28(4):9~11。
    [52] 胡振宇,林士敏,陆玉昌。贝叶斯学习中基于贝叶斯判别分析的先验分布选取[J],计算机科学。2003,30(8):134~135。
    [53] 吴磊,徐怀民,季汉成。基于交绘图和多元统计法的神经网络技术在火山岩识别中的应用[J],石油地球物理勘探。2006,41(1):81~86。
    [54] 万丽,王庆飞,高帮飞,王颖,周应华,徐浩。成矿预测数据统计方法[J]。现代地质,2005,19(4):615~620。
    [55] 雷兢,沈斐敏。贝叶斯(Bayes)判别分析理论在安全评价中的应用,工业安全与环保[J]。2004,30(5):39~40。
    [56] 魏治文,方坤河,杨华山,张凡。贝叶斯(Bayes)判别分析在粉煤灰分类中的应用[J],粉煤灰综合利用。2006,6:11~13。
    [57] 田絮资。区域地貌中的聚类分析及贝叶斯判别方法[J],西北农林科技大学学报(自然科学版)。2003,31(5):179~182。
    [58] 斯仑贝谢测井公司编,吴庆岩,张爱军译。测井解释常用岩石矿物手册[M]。北京:石油工业出版社,1998。
    [59] 石才艳。基于判别分析理论的岩性识别技术研究[D],哈尔滨工业大学硕士学位论文。2003。
    [60] 姜雪。海拉尔盆地乌尔逊-贝尔凹陷铜钵庙组-大磨拐河组火山-碎屑沉积岩岩性岩相分析[D],吉林大学硕士学位论文。2007。
    [61] 刘秀娟,陈超,曾冲,兰磊。利用测井数据进行岩性识别的多元统计方法[J],地质科技情报。2007,26(3):109~112。
    [62] 刘家瑾,陆国纯。煤田测井资料数字处理[M]。北京煤炭工业出版社,1993:65~78。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700