用户名: 密码: 验证码:
华北蓟县地区中元古界古地磁研究及其古大陆再造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对华北地台蓟县、兴隆和宽城地区的中元古界及中生代髫髻山组共142 个采点,1155 块样品开展了详细的古地磁研究,共分离出13 个方向各异的剩磁分量。在各岩石单元普遍存在的低温分量方向在地理坐标系下与现代地磁场方向接近,是现代场重磁化的结果。9 个高温分量受到后期重磁化或构造扰动的影响。对各岩石单元代表性样品进行了岩石磁学实验(饱和等温剩磁和剩磁矫顽力的测量、三轴等温剩磁的系统热退磁分析和磁化率随温度变化曲线),结果表明多数样品的磁性矿物主要为赤铁矿,或赤铁矿与磁铁矿共存,少数样品的磁性矿物主要为磁铁矿,或以磁铁矿为主,含少量的赤铁矿、针铁矿和磁黄铁矿。
    从构造稳定的蓟县剖面的杨庄组、雾迷山组和铁岭组获得了最可能的原生剩磁。从杨庄组15 个采点获得的高温剩磁分量在99%置信水平上通过了褶皱检验,在95%置信水平上通过了倒转检验,对应的视磁极位置为17.3°N, 214.5°E(dp=4.1°, dm=8.0°)。从雾迷山组红层中获得的古地磁结果虽然没有野外检验,但很可能代表了原生剩磁方向,视磁极位置为20.2°N, 221.4°E(dp=2.8°, dm=5.5°)。从铁岭组11 个采点获得的高温剩磁分量,在99%置信水平上通过褶皱检验,对应的视磁极位置为11.6°N, 187.1°E(dp=4.9°, dm=8.1°)。对杨庄组、雾迷山组和铁岭组古地磁极的最佳年龄估计值分别为1350,1300 和1120Ma。
    在全面回顾华北地台古地磁结果的基础上,建立了华北地台中新元古代视极移曲线。根据视极移曲线恢复的古地理位置表明,中新元古代华北地台位于中低纬度地区。通过对华北地台、Laurentia、Baltica 和Siberia 大陆中元古代视极移曲线(或古地磁极)的拟合,并结合前人的研究成果,结果表明在中新元古代期间,这些大陆的相对位置没有发生明显的变化,其中华北地台通过Siberia 与Laurentia 相连,Baltica 与格陵兰相连。1350-1200Ma 期间,华北相对Laurentia发生了大约90o的逆时针旋转。在1265-1070Ma 期间,Baltica 相对格陵兰向南移动了约1500 km, Siberia 则没有发生明显的变化。在1350-1100Ma 期间各大陆连接方式的转换与Columbia 超级大陆的裂解和Rodinia 超级大陆的形成时间对应。
    兴隆和宽城髫髻山组的高温分量具有稳定的退磁特征,携磁矿物主要为赤铁矿。古地磁结果显示,这两个地区自晚侏罗世以来相对华北稳定地区分别发生了旋转量为115.2°±15.1°和146.1°±13.9°的顺时针旋转,但没有明显的纬向位移。该地区发生的顺时针旋转作用可能与中生代大型右行走滑系统相关。
A total of 142 sties, 1155 paleomagnetic samples were collected from the Mesoproterozoic successions and Late Jurassic Tiaojishan Formation in Jixian, Xinglong and Kuancheng areas, North China Block (NCB). Detailed stepwise thermal demagnetizations allowed us to isolate 13 different components. A low temperature component, which exists in all rock units, is interpreted as a remagnetization of recent geomagnetic field. Nine high temperature components may be affected by the remagnetization or local rotation, and their paleogeographic implications are not further discussed in this thesis. Results of rock magnetic study, including IRM acquisitions, three-component IRM thermal demagnetization and temperature dependence of magnetic susceptibility analysis, for representative samples from each rock unit indicated that the predominant magnetic minerals in most samples are hematite or hematite with minor magnetite, and in a few samples are magnetite, or magnetite coexisting with hematite, goethite and pyrrhotite.
    Three interpreted primary components were derived from the Yangzhuang, Wumishan and Tieling Fromations in Jixian area. The high temperature component isolated from 15 sites of the Yangzhuang Formation can pass fold test at 99% confidence level and reversal test at 95% confidence level. Its corresponding pole locates at 11.6°N, 187.1°E (dp=4.9°, dm=8.1°). The hard component derived from Wumishan Formation has no field test, but may be primary according to its stable high-temperature demagnetization characteristics, and this result is consistent with paleogeographic and paleoclimate proxies resided in rocks. The corresponding paleomagnetic pole locates at 20.2°N, 221.4°E (dp=2.8°, dm=5.5°). Eleven sites of Tieling Formation yields a hard component which can pass fold test at 99% confidence level, and its corresponding pole locates at 11.6°N, 187.1°E (dp=4.9°, dm=8.1°). The best estimated ages for paleomagnetic poles from the Yangzhuang, Wumishan and Tieling Formation are 1350, 1300 and 1120 Ma, respectively.
    Based on our new results and a critical selection of available data from North China, a new apparent polar wander path (APWP) is compiled for NCB in Meso-to Neoproterozoic. Notwithstanding the alternative polarities applicable to these poles, the NCB was within mid to low latitude zone for much of this time span. After
引文
[1] Banerjee S, Elmore R D, Engel M H. Chemical remagnetization and burial diagenesis: testing the hypothesis in the Pennsylvanian Belden Formation, Colorado, J. Geophys. Res., 1997, 102: 24825-24842.
    [2] Blumstein A M, Elmore R D, Engel M H. Paleomagnetic dating of burial diagenesis in Mississippian carbonates, Utah. J. Geophys. Res., 2004, 109: B04101.
    [3] Briden J C. Paleomagnetism of Africa and Madagascar. In: McElhinny M W, Valencio, eds., Paleoreconstructions of the continents. Am. Geophys. Union Geodynam. Ser., 1981, 2: 65-76.
    [4] Brookfield M E. Neproterozoic Laurentia-Australia fit. Geology, 1993, 21: 683-686.
    [5] Brothers L A, Engel M H, Elmore R D. The late diagenetic conversion of pyrite to magnetite by organically complexed ferric iron, Chem. Geol., 1996, 130: 1-14.
    [6] Buchan K L, Mertanen S, Park R G, et al. Comparing the drift of Laurentia and Baltica in the Proterozoic: the importance of key paleomagnetic poles. Tectonophysics, 2000, 319: 167-198.
    [7] Buchan, K L, Ernst R E, Hamilton M A, et al. Rodinia: the evidence from intergrated palaeomagnetism and U-Pb geochronology. Precamb. Res., 2001, 110: 9-32.
    [8] Bullard E C, Everett J E, Smith A G. The fit of the continents around the Atlantic. Philos. Trans. R. Soc. Lond. (Ser. A.) , 1965, 258: 41–51.
    [9] Bulter R F. Paleomagnetism: Magnetic domains to geologic terranes. Electronic Edition, 1998. 1-238.
    [10] Burrett C, Berry R. Proterozoic Australia -Western United States (AUSWUS) fit between Laurentia and Austialia. Geology, 2000, 28: 103-106.
    [11] Cao G Q, Zhang R C, Yang Z J, et al. Geological characteristics of the North China and Tarim Cratons. In: Cheng Y Q (Ed.), Outline of Regional Geology of China. Geological Publishing House, Beijing. 1994. 90-104.
    [12] Card K D. A review of the Superior province of the Canadian Shield, a product of Archean accretion. Precambrian Research, 1990, 48: 99-156.
    [13] Channell J E T, McCabe C. Comparison of magnetic hysteresis parameters of unremagnetized and remagnetized limestionse. J. Geophys. Res., 1994, 99: 4613-4623.
    [14] Chumakov N M, Elston D P. Paleomagnetic data, late Precambrian magnetostratigraphy and tectonic evolution of evolution China. Precambrian Research, 1985, 29: 65-75.
    [15] Chumakov N M, Elston D P. The paradox of Late Proterozoic glaciations at low latitudes. Episodes, 1989, 12(2): 115-120
    [16] Condie K C, Rosen O M. Laurentia-Siberia connection revisited. Geology, 1994, 22: 168-170.
    [17] Condie K C. Breakup of a Paleoproterozoic supercontinent. Gondwana Res., 2002, 5: 41-43.
    [18] Courtillot v, Chambon P, Brun J P, et al. A magnetotectonic study of the Hercynian Montagne Noire (France). Tectonics, 1986, 5: 733-751.
    [19] Creer K M. A reconstruction of the continents for the Upper Paleozoic from paleomagnetic data. Nature, 1964, 203: 1115-1120.
    [20] Creer K M. Paleozoic paleomagnetism. Nature, 1968, 219: 246-250.
    [21] Crick R E, Ellwood B B, Hladil J, et al. Magnetostratigraphy susceptibility of the P?ídolian-Lochkovian (Silurian-Devonian) GSSP (Klonk, Czech Republic) and a coeval sequence in Anti-Atlas Morocco. Palaeogeography, Palaeoblimatology, Palaeoecology, 2001, 167: 73-100.
    [22] Dalziel I W D. Antarctica: a tale of two supercontinents? Ann. Rev. Earth Planet. Sci.,1992,20: 501-526.
    [23] Dalziel I W D. Global paleotectonics: reconstructing a credible supercontinent. Nordic Palaeomagnetic Syposium. Arhus Geosci., 1999, 8: 37-40.
    [24] Dalziel I W D. Neoproterozoic-Paleozoic geography and tectonics: review, hypothesis, environmental speculation. Geol. Soc. Amer. Bull., 1997, 108: 16-42.
    [25] Dalziel I W D. Pacific margins of Laurentia and East Antarctic-Australia as a conjugate rift pair: evidence and implications for an Eocambrican supercontinent. Geology, 1991, 19: 119-122.
    [26] Davis G A, Zheng Y D, Wang C, et al. Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China. Geological Society of America, 2001, Memoir 194: 171-197.
    [27] Dirks P H G M, Jelsma H A. Horizontal accretion and stabilization of the Archean Zimbabwe Craton. Geology, 1998, 26(1): 11-14.
    [28] Ellwood B B, Crick R E, García-Alcalde Fernandez J L, et al. Global correlation using magnetic susceptibility data from Lower Devonian rocks. Geology, 2001, 29(7): 583-586.
    [29] Elming S -?, Mattson H. Post-Jotnian basic intrusions in the Fennoscandian shield, and the break up of Baltica and from Laurentia: a paleomagnetic and AMS study. Precambrian Res., 2001, 108: 215-236.
    [30] Elming S -?, Pesonen L J, Leino M A H, et al. The drift of the Fennoscandian and Ukranian shields during the Precambrian: a palaeomagnetic analysis. Tectonophysics, 1993, 223: 177-198.
    [31] Elmore R D. A review of paleomagnetic data on the timing and origin of multiple fluid-flow events in the Arbuckle Mountains, southern Oklahoma. Petroleum Geoscience, 2001, 7: 223-229.
    [32] Embleton B J J, Williams G E. Low palaeolatitude of deposition for late Precambrian periglacial varvites in South Australia: Implications for palaeoclimatology. Earth and Planetary Science Letters, 1986, 79: 419-430.
    [33] Embleton J J, McElhinny M W, Ma X H, et al. Permo-Triassic magnetostratigraphy in China: the type section near Taiyuan, Shanxi Province, North China.Geophys J Int, 1996, 126: 382-388.
    [34] Emslie R F, Loveridge W D. Fluorite-bearing Early and Middle Proterozoic granites, Okak Bay area, Labrador: geochronology, geochemistry and petrogenesis. Lithos, 1992, 28: 87-109.
    [35] Ernst R E, Buchan K L. Mantle plume events during the assembly and breakup of Rodinia: the record from short-duration large igneous province. Abstracts with Programs-Geological Society of America, 1999, 31: 316.
    [36] Ernst, R. E., Buchan, K.L., Hamilton, M.A., et al. Integrated paleomagnetism and U-Pb geochronology of mafic dikes of the eastern Anabar Shield region, Siberia: Implications for Mesoproterozoic paleolatitude of Siberia and comparison with Laurentia. The Journal of Geology, 2000, 108: 381-401.
    [37] Erwin D, Valentine J, Jablonsli D. The origin of animal body plans. Amer. Sci., 1997, 85: 126-137.
    [38] Evans D A D, Li Z X, Kirschvink J L, et al. A high-quality mid-Neoproterozoic paleomagnetic pole from South China, with implications for ice ages and the breakup configuration of Rodinia. Precambrian Research, 2000, 100: 313-334.
    [39] Evans D A D. Stratigraphic, geochronological, and paleomagnetic constraints upon the Neoproterozoic climatic paradox. Am. J. Sci., 2000, 300: 347-433.
    [40] Fisher R A. Dispersion on a sphere. Proc. R. Soc. Lond. 1953, A 217: 295-305.
    [41] Frost B R, Avchenko O V, Chamberlain K R, et al. Evidence for extensive Proterozoic remobilization of the Aldan Shield and implications for Proterozoic plate tectonic reconstructions of Siberia and Laurentia. Precambrian Res., 1998, 89: 1-23.
    [42] Garza R S M, Zijderveld J D A. Paleomagnetism of Paleozoic strata, Brabant and Ardennes Massifs, Belgium: Implications of prefolding and postfolding Late Carboniferous secondary magnetizations for European apparent polar wander. Journal of Geophysical Research, 1996, 101: 15799-15818.
    [43] Giddings J W. Precambrian paleomagnetism in Australia I: basic dykes and volcanics from the Yilgarn Block. Tectonophysics, 1976, 30: 91-108.
    [44] Gill J D, Elmore R D, Engel M H. Chemical remagnetization and clay diagenesis: testing the hypothesis in the Cretaceous sedimentary rocks of northwestern Montana. Physics and Chemistry of the Earth, 2002, 27: 1131-1139.
    [45] Goodwin A. Principles of Precambrian Geology. London: Academic Press. 1996. 51-121.
    [46] Gower C F, Ryan A B, Rivers T. Mid-Proterozoic Laurentia-Baltica: An overview of its geological evolution and summary of the contributions by this volume. In: Gower C F, Rivers T, Ryan B, eds. Mid-Proterozoic Laurentia-Baltica. Geol Assoc Can Spec Pap, 1990, 38: 1-20.
    [47] Halls H C, Heaman L M. The paleomagnetic significance of new U-Pb data form the Molson dyke swarm displaycement. Geology, 2000, 36: 67-70.
    [48] Halls H C, Li J, Davis D, et al. A precisely dated Proterozoic paleomagnetic pole from the North China craton, and its relevance to paleocontinental reconstruction. Geophys. J. Int. 2000, 143: 185-203.
    [49] Halls H C, Wingate M T D. Paleomagnetic pole from the Yilgarn B (YB) dykes of Western Australia: no longer relevant to Rodinia reconstructions. Earth Planet. Sci. Lett., 2001, 187:39-53.
    [50] Hoffman E P. Speculations on Laurentia’s first gigayear (2.0 to 1.0 Ga). Geology, 1989, 17: 135-138.
    [51] Hoffman P F, Kaufman A J, Halverson G P et al. A Neoproterozoic snowball Earth. Science, 1998b, 281: 1342-1346.
    [52] Hoffman P F, Kaufman A J, Halverson G P. Comings and goings of global glaciation on a Neoproterozoic tropical platform in Namibia. GSA Today, 1998a, 8: 1-9.
    [53] Hoffman P F, Schrag D P. The smowball Earth hypothesis: testing the limits of global change. Terra Nova, 2002, 14: 129-155.
    [54] Hoffman P F. Did breakout of Laurentia turn Gondwana inside-out? Science, 1991, 252: 1409-1411.
    [55] Hoffman P F. The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. J. Afr. Earth Sci., 1999, 28: 17-33.
    [56] Hogan J P, Gilbert M C. Timing of the final breakout of Laurentia. Abstracts with Programs -Geological Society of America, 1997, 29: 432.
    [57] Hounslow M W, Maher B A. Source of the climate signal recorded by magnetic susceptibility variations in Indian Ocean sediments. Journal of Geophysical Research, 1999, 104(B3): 5047-5061.
    [58] Hrouda F, Jelìnek V, Zapletal K. Refinement of the technique for susceptibility resolution into ferromagnetic and paramagnetic components. Geohys. J. Int., 1997, 129: 715-719.
    [59] Hrouda F. A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 Apparatus and KLY-2 kappabridge. Geophys. J. Int., 1994, 118: 604-612.
    [60] Huang B C,Yang Z Y, Zhu R X. Early paleozoic paleomagnetic poles from the western part of the North China Block and their implications. Tectonophysics, 1999, 308: 377-402.
    [61] Irving E. Paleomagnetic and paleoclimatological aspects of polar wandering. Geofis. Pura. Appl., 1956, 33: 23-41.
    [62] Irving E. Paleomagnetism and its application to geological and geophysical problems. Wiley, New York. 1964. 1-399.
    [63] Jackson M, et al. Diagenetic sources of stable remanence in remagnetized Paleozoic cratonic carbonates: A rock magnetic study. J. Geophys. Res., 1990, 95: 2753-2761.
    [64] Jackson M, McCabe C, Ballard M M, et al. Magnetite authigenesis and diagenetic paleotemperatures across the northern Appalachian Basin. Geology, 1988, 16: 592-595.
    [65] Karlstr?m K E, ?h?ll K -I, Harlan S S, et al. Long-lived (1.8-1.0 Ga) convergent orogen in southern Laurentia, its extensions to Australia and Baltica, and implications for refining Rodinia. Precambrian Research, 2001, 111: 5-30.
    [66] Karlstr?m K E, Harlan S S, Williams M L, et al. Refing Rodinia: geologic evidence for the Australia-Western U.S. connection in the Proterozoic. GSA Today, 1999, 9: 1-7.
    [67] Katz B, Elmore R D, Cogoini M, et al. Associations between burial diagenesis of smectite, chemical remagnetization, and magnetite authigenesis in the Vocontian trough, SE France, J. Geophys. Res., 2000, 105: 851-868.
    [68] Katz B, Elmore R D, Cogoini M, et al. Widespread chemical remagnetization: orogenic fluids or burial diagenesis of clays? Geology, 1998, 26: 603-606.
    [69] Kent D V. Thermal viscous remagnetization in some Appalachian limestones. Geophys. Res. Lett., 1985, 12: 805-808.
    [70] Kirschvink J K. The least-squares line and plane and analysis of paleomagnetic data. Geophys. J. Roy. Astr. Soc., 1980, 62: 699-718.
    [71] Kirschvink J L. Late Proterozoic low-latitude global glaciation: the snowball earth. In: The Proterozoic Biasphere(J. W. Schopf and C. Klein. Eds), Cambridge University Press, Cambridge. 1992. 51-52.
    [72] Kr?ner A, Cui W Y, Wang S Q, et al. Single zircon ages from high-grade rocks of the Jianping Complex, Liaoning Province, NE China. J. Asian Earth Sci. 1998, 16:519 -532.
    [73] Ledru P, Johan V, Mi1ési J P, et al. Makers of the last stage of the Paleoproterozoic collision: Evidence for 2 Ga continent involving circum-South Atlantic provinces. Precambrian Res, 1994, 69: 169-191.
    [74] Li Z X, Evans D A D, Zhang S. A 90°spin on Rodina: possible causal links between the Neoproterozoic supercontinent, superplume, true polar wander and low-latitude glaciation. Earth and Planetary Science Letters, 2004, 220: 409-421.
    [75] Li Z X, Li X H, Kinny P D, et al. The breakup of Rodinia: Did it start with a mantle plume beneath South China? Earth Planet. Sci. Lett., 1999, 173: 171-181.
    [76] Li Z X, Powell C M, Schmidt. Syn-deformational remanent magnetization of Mount Eclipse sandstone, Central Australia. Geophys. J. Int., 1989, 99: 205-222.
    [77] Li Z X, Powell C McA, Thrupp G A, et al. Australia palaeozoic palaeomagnetism and tectonics -Ⅱ. A revised apparent polar wander path and palaeogeography. J. Struct. Geol, 1990, 12: 567-575.
    [78] Li Z X, Zhang L, and Powell, C M. South China in Rodinia: Part of the missing link between Australia-East Antarctica and Laurentia? Geology, 1995, 23: 407-410.
    [79] Li Z X, Zhang L, Powell C McA. Positions of the East Asian cratons in the Neoproterozoic supercontinent Rodmia, Australian journal of Earth Sciences, 1996, 43: 593-604.
    [80] Li Z X. New paleomagnetic results from the‘cap dolomite' of the Neoproterozoic Walsh Tittite,northwestern Australia. Precambrian Research, 2000, 100: 359-370.
    [81] Lieberman B S. Early Cambrian paleogeography and tectonic history: a biogeographic approach. Geology, 1997, 25: 1039-1042.
    [82] Lin J L. The apparent polar wander paths for the North and South China Blocks, Ph.D. thesis. Univ. Of Calf. Santa Barbara, 1984. 248pp.
    [83] Link P K, Christi-Blick N, Devlin W J,et al. Middle and later proterozoic stratified rocks of the western U.S. Cordillera,Colorado Plateau,and basin and Range province. The Geology of North America, 1993, C-2: 463-59.
    [84] Lowrie W. Identification of ferromagnetic minerals in a rock coercivity and unblocking temperature properties. Geophys. Res. Lett., 1990, 17(2): 159-162.
    [85] Lu G, McCabe C, Hanor J S, et al. A genetic link between remagnetization and potassic metasomatism in the Devonian Onondaga Formation, northern Appalachian Basin. Geophysical Research Letter, 1991, 18: 2047-2050.
    [86] Machado N. Timing of collisional events in the Trans Hudson orogen, in: Lewry J F, Stauffer M. The early Proterozoic Trans-Hudson Orogen of north America, Geol. Assoc. Canada, 1990, Special Paper 37: 433-441.
    [87] Macouin M, Beese J, Ader M, et al. Combined paleomagnetic and isotopic data from the Doushantuo carbonates, South China: implications for the “snowball Earth”hypothesis. Earth and Planetary Science Letters, 2004, 224: 387-398.
    [88] Martin M W, Grazhdankin D V, Bowring S A, et al. Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: Implications for metazoan evolution. Science, 2000, 288: 841-845.
    [89] Mc Williams M O, Kr?ner A. Paleomagnetism and tectonic evolution of the Pan-African Damara Belt, southern Africa. Journal of Geophysical Research, 1981, 98: 6189-6199.
    [90] Mc Williams M O, McElhinny M W. Late Precambrian palaeomagnetism of Australia: The Adelaide Geosyncline. Journal of geology, 1980, 88: 1-26.
    [91] McCabe C, Elmore D R. The occurrence and origin of late Paleozoic remagnetization in the sedimentary rocks of North America. Rev. Geophys., 1989, 27: 471-494.
    [92] McElhinny M W, Lock J. Global paleomagnetic database supplement number one: update to 1992. Surveys in geophysics, 1993, 14: 303-329.
    [93] McElhinny M W, McFadden P L. Paleomagnetism: continents and Oceans. Academic Press, California, 2000. 1-386.
    [94] McElhinny M W. Palaeomagnetism and plate tectonics. Cambridge Univ. Press, Cambridge. 1973. 1-358.
    [95] McElhinny M W. Statistical significance of the fold test in palaeomagnetism. Geophys. J. R. Astron. Soc., 1964, 8: 338-340.
    [96] McElhinny M W. Statistical significance of the fold test in palaeomagnetism. Geophys. J. R. Astron. Soc., 1964, 8: 338-340.
    [97] McFadden P L, McElhinny M W. The combined analysis of remagnetization circle and direct observation in paleomagnetism. Earth Planet. Sci. Lett., 1988, 87: 161-172.
    [98] McFadden P L, McElhinny, M W. Classification of the reversals test in paleomagnetism. Geophys. J. Int., 1990, 103: 725-729.
    [99] McFadden P L. A new fold test for paleomagnetic studies. Geophys. J. Int., 1990, 103: 163-169.
    [100] McKerrow W S,Scotese C R, Brasier M D. Early Cambrian continental reconstructions. Geol Soc London J,1992, 149: 599-606.
    [101] McMenamin M A S, McMenamin D L S. The Emergence of Animals: the Cambrian Breakthrough. New York: Columbia University Press. 1990, 1-12.
    [102] Meert J G, Stuckey W. Revisiting the paleomagnetism of the 1.476 Ga St. Francois Mountains igneous province, Missouri. Tectonics, 2002, 21(2), 10.1029/2000TC001265.
    [103] Meert J G, Torsvik T H. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics, 2003, 375: 261-288.
    [104] Meert J G, Van der Voo, Powell R, et al. A plate-tectonic speed limit? Nature, 1993, 363: 216-217.
    [105] Meert J G. Paleomagnetic evidence for a Paleo-Mesoproterozoic supercontinent Columbia. Gondwana Res, 2002, 5: 207-216.
    [106] Merrill R T, McElhinny M W, McFadden P L. The magnetic field of the Earth: Paleomagnetism, the Core, and the Deep Mantle. Academic Press, San Diego. 1996. 1-531.
    [107] Moores E W. Southwest US-East Antarctic (SWEAT) connection: a hypothesis. Geology, 1991, 19: 425-428.
    [108] Moreau M G, Ader M, Enkin R J. The magnetization of clay-rich rocks in sedimentary basins: low-temperature experimental formation of magnetic carriers in natural samples. Earth and Planetary Letters, 2005, 230: 193-210.
    [109] Morris W A. Paleolatitude of glaciogenic upper Precambrian Rapitan Group and the use of tillites as chronostratigraphic marker horizons. Geology, 1977, 20: 1031-1034.
    [110] Naqvi S M, Rogers J J W. Precambrian Geology of India. Oxford Univ. Press, Oxford. 1987. 223 pp.
    [111] Narbonne G M, Gehling J G. Life after snowball: The oldest complex Ediacaran fossils. Geology, 2003, 31(1): 27-30.
    [112] Onstott T C, Hargraves R B. Proterozoic transcurrent tectonics: Paleomagnetic evidence from Venezula and Africa. Nature, 1981, 289: 131-136.
    [113] Park Y -H, Doh S -J, Suk D. Chemical remagnetization of the Upper Carboniferous-Lower Trissic Pyeongan Supergroup in the Jeongseon area, Korea: fluid migrateon through the Ogcheon Fold Belt. Geophys. J. Int., 2003, 154: 89-103.
    [114] Perrin M, Prevot M. Uncertainties about the Proterozoic and Paleozoic polar wander path of the West African Craton and Gondwana: evidence for successive remagnetization events. Earth and Planetary Science Letters, 1988, 88: 337-347.
    [115] Perrin M. Complex magnetization of the Early Cambrian Jolcano-Sedimentary sequence from the Bou Azzer region, Anti Atlas (moroccol). Physics of the Earth and Planetary Interious, 1994, 85: 35-51.
    [116] Pesonen L J, Elming S -?, Mertanen S, et al. Palaeomagnetic configureation of continents during the Proterozoic. Tectonophysic, 2003, 375: 289-324.
    [117] Piper J D A, Zhang Q R. Paleomagnetism of Neoproterozoic glacial rocks of the Huabei shield: the North China Block in Gondwana. Tectonophysics, 1997, 283: 145-171.
    [118] Piper J D A. Palaeomagnetism and the Continental Crust. Open Univ. Press, Milton Keynes. 1987. 1-434.
    [119] Piper J D A. The Precambrian paleomagnetic record: the case for the Proterozoic Supercontinent. Earth Planet. Sci. Lett., 1982, 48: 751-755.
    [120] Pisarevsky S A, Bylund G. Neoproterozoic palaeomagnetic directions in rocks from a key section of the Protogine Zone, southern Sweden. Geophys. J. Int., 1998, 133: 185-200.
    [121] Pisarevsky S A, Natapov L M. Siberia and Rodinia. Tectonophysic, 2003, 375: 221-245.
    [122] Pisarevsky S A, Sokolov S J. The magnetostratigraphy and a 1780 Ma palaeomagnetic pole from the red sandstones of the Vazhinka River section, Karelia, Russia. Geophys. J. Int. , 2001, 146: 531-538.
    [123] Pisarevsky S A, Wingate M T D, Harris L B. Late Mesoproterozoic ( Ca 1.2 Ga ) palaeomagnetism of the Albany-Fraser orogen: no pre-Rodinia Australia-Laurentia connection. Geophys. J. Int., 2003, 155: F6-F11.
    [124] Powell C McA, Li Z X, McElhinny M W, et al. Paleomagnetic constrains on timing of the Neoproterozoic breakup of Rodinia and the Cambrian fromation of Gondwana, Geology, 1993, 21:889-892.
    [125] Qian X L. Tectonic correlations of the Precambrian evolution of the North China Craton with the Baltic shield. In: Qian X L, You Z D, Halls H C, et al. Precambrian Geology and Metamorphic Petrology. Utrcht, the Netherlands, 1997. 43-58.
    [126] Radhakrishna T, Joseph M. Proterozoic palaeomagnetism of the mafic dyke swarms in the high-grade region of southern India. Precambrian Research, 1996, 76: 31-46.
    [127] Radhakrishna T, Joseph. Proterozoic palaeomagnetism of the mafic dyke swarms in the high-grade region of southern India. Precambrian Res., 1996, 76: 31-46
    [128] Radhakrishna T, Mathew M W. Late Precambrian (850-800 Ma) palaeomagnetic pole for the south Indian shield from the Harohalli alkaline dykes: geotectonic implications for Gondwana reconstructions. Precambrian Res., 1996, 80: 77-87.
    [129] Rainbird R H, Stern R A, Khudoley A K, et al. U–Pb geochronology of Riphean sandstone and gabbro from southeast Siberia and its bearing on the Laurentia-Siberia connection. Earth Planet. Sci. Lett., 1998, 164: 409-420.
    [130] Rogers J, Santosh M. Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Res., 2002, 5: 5-22.
    [131] Runcorn S K. Paleomagnetic comparisons between Europe and North America. Proc. Geol. Assoc. Canada, 1956, 8: 77-85.
    [132] Runnegar B. Loophole for snowball Earth. Nature, 2000, 405: 403-404.
    [133] Saffer B, McCabe C. Further studies of carbonate remagnetization in the northern Appalachian basin. J. Geophys. Res., 1992, 97: 4331-4348.
    [134] Schmidt P W, Williams G E, Embleton B J J. Low palaeolatitude of Late Proterozoic glaciation: Early timing of remanence in haematite of the Elatina formation, South Australia. Earth and Planetary Science Letters, 1991, 105: 335-367.
    [135] Schrag D P, Berner R A, Hoffman P F, et al. On the initiation of a snowball Earth. Geochem. Geophys. Geosystems, 2002, 3, 1036, doi: 10.1029/2001GC000219.
    [136] Sengor A M C. Plate tectonics and Orogenic research affer 25 years: a tethyan perspective, Earth-Science Reviews, 1990, 27: 1-201.
    [137] Sircombe K N. Promise and peril: microanalysis, provenance and reconstruction in Rodinia and beyond. In: Sircombe K N, Li Z X, eds., From basins to mountains: Rodinia at the turn of a century. Geological Society of Australia Abstracts., 2001, 65: 101-104.
    [138] Smethrust M A, Khramov A N. A new paleomagnetic pole for the Russian platform and Baltica, and related apparent polar wander path. Geophys. J. Int., 1992, 108: 179-192.
    [139] Smethurst M A, Khramov A N, Torsvik T H. The Neoproterozoic and Paleozoic paleomagnetic data for the Rodinian Platform: from Rodinia to Pangea. Earth Science Review, 1998, 43: 1-24.
    [140] Sohl L E, Christie-Blick N, Kent D V. Paleomagnetic polarity reversals in Marinoan (ca. 600 Ma) glacial deposits of Australia: implications for the duration of Iow-latitude glaciations in Neoproterozoic time. Geol. Soc. Am. Bull., 1999, 111: 1120-1139.
    [141] Stage M. Magnetic susceptibility as carrier of a climatic signal in chalk. Earth and Planetary Science Letters, 2001, 188: 17-27.
    [142] Storey B C. The changing face of late Precambrian and early Paleozoic reconstructions. J Geol Soc London, 1993, 150: 665-668.
    [143] Suk D R, Halgedahl S l. Hysteresis properties of magnetic spherules and whole specimens from some Paleozoic platform carbonate rocks. J. Geophys. Res., 1996, 101(B11): 25053-25075.
    [144] Torsvik T H, Carter L M, Ashwal L D, et al. Rodinia refined or obscured: palaeomagnetism of he Malani Igneous Suite (NW India). Precambrican Res., 2001, 108: 319-333.
    [145] Torsvik T H, Smethurst M A, Meert J G, et al. Continental breakup and collision in the Neoproterozoic and Paleozoic-a tale of Baltica and Laurentia. Earth Sci. Rev., 1996, 40: 229-258.
    [146] Torsvik T H, Smethurst M A, Meert J G, et al. Continental breakup and collision in the Neoproterozoic and Paleozoic -a tale of Baltica and Laurentia. Earth Sci. Rev., 1996, 40: 229-258.
    [147] Torsvik T H. The Rodinia Jigsaw puzzlee. Science, 2003, 300: 1379-1381.
    [148] Van der Voo R. Paleomagnetism of the Atlantic, Tethys and Iapetus oceans. Cambridge: Cambridge Press, 1993. 1-411.
    [149] Van der Voo, R. Phanerozoic paleomagnetic poles from Europe and North America and comparisons with continental reconstructions. Rev. Geophys., 1990, 28: 167-206.
    [150] Wang H Z, Li X, Mei S L, et al. Pangaea cycles, Earth’s Rhythms and possible earth expansion. In: Wang H Z, Jahn B, Mei S L, et al. Proc. 30th Intern. Geol. Congr. 1, Utrecht: International Scientific Publications, 1997. 111-128.
    [151] Wang H Z, Zhang S H, He G Q. China and Mongolia. In Selley R C, Cocks L R M, Plimer I R, eds., Encyclopedia of geology. Elsevier, Oxford. 2005. Vol.1: 345-358.
    [152] Wang Z M, Van der Voo. Perasive remagnezation of Paleozoic rocks acquired at the time of Mesozoic folding in the south China block. J Geophys Res, 1993, 98: 1792-1741.
    [153] Watson G S, Enkin R J. The fold test in paleomagnetism as a parameter estimation problem. Geophysical Research Letters, 1993, 20(19): 2135-2137.
    [154] Weil A B, Van der Voo R, Niocaill C M, et al. The Proterozoic supercontinent Rodinia paleomagnetically derived reconstructions for 1100-800Ma. Earth and Planetary Science Letters, 1998, 154: 13-24.
    [155] Wingate M T D, Giddings J W. Age and paleomagnetism of the Mundine Well dyke swarm, Western Australia: implications for an Australia-Laurentia connection at 755 Ma. Preamb. Res., 2000, 100: 335-357.
    [156] Wingate M T D, Pisarevsky S A, Evans D A D. Rodinia connections between Australia and Laurentia: no SWEAT, no AUSWUS? Terra Nova, 2002, 14: 121-128.
    [157] Wu Huaichun, Zhang Shihong, Jiang Ganqing, et al. Magnetic susceptibility measurement of the cap carbonates in the Yangtze platform and their implications for paleoclimate. Chinese Journal of Oceanology and Limnology, 2005 (印刷中).
    [158] Zhang H M, Zhang W Z. Paleomagnetic data, late Precambrian magnetostratigraphy and tectonic evolution of eastern China. Precambrian Research, 1985, 29: 65-75.
    [159] Zhang Q R, Piper J D A. Palaeomagnetic study of Neoproterozoic glacial rocks of the Yangzi Block: Palaeolatitude and configuration of South China in the Late Proterozoic supercontinent. Precam. Res., 1997, 85: 173-199.
    [160] Zhang S H, Li Z X, Wu H C, et al. New paleomagnetic results from the Neoproterozoic successions in southern North Block and paleogeographic implications. Science in China (Series D), 2000, 43(Supp.): 233-244.
    [161] Zhang S H, Li Z X, Wu H C, New Precambrican palaeomagnetic results provide tight constraint on the position of the North China Block relative to Laurentia in Rodinia. Precambrian Research, 2005. in review.
    [162] Zhao G C, Cawood P A, Wilde S A, et al. Review of global 2.1-1.8Ga orogens: Implications for a pre-Rodinia supercontinent. Earth Sci. Rev., 2002a, 59: 125-162.
    [163] Zhao G C, Sun M, Wilde S A, et al. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Science Review, 2004, 67: 91-123.
    [164] Zhao G C, Sun M, Wilde S A. Did South America and West Africa marry and divorce or was it a long-lasting relationship? Gondwana Res., 2002b, 5: 591-596.
    [165] Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Res., 2001a, 107: 45-73.
    [166] Zhao G C. Palaeoproterozoic assembly of the North China Craton. Geol. Mag., 2001b, 138: 87-91.
    [167] Zhao X X, Coe R S, Gilder S A, et al. Palaeomagnetic constraints on the palaeogeography of China: implications for Gondwanaland. Australia Journal of Earth Sciences, 1996, 43: 643-672.
    [168] Zhao X X, Coe R S, Liu C, et al. New Cambrian and Ordovician Paleomagnetic poles for the North China block and their paleogeographic implication. Journal of geophysical research, 1992, 97(B2):1767-1788.
    [169] Zhao X X, Coe R S, Wu H N, et al. Silurian and Devonian paleomagnetic poles from North china and implications for Gondwana. Earth Planet. Sci. Lett., 1993, 117: 497-506.
    [170] Zhao X X, Coe R S, Zhou Y X, et al. New paleomagnetic results from Northern China, collision and suturing with Siberia and Kazakhstan. Tectonophysics, 1990, 181: 43-81.
    [171] 白瑾. 华北陆台北缘前寒武纪地质及铅锌成矿作用. 北京:地质出版社. 1993.1-132.
    [172] 北京地质矿产局.北京市区域地质志. 北京:地质出版社. 1991. 1-598.
    [173] 陈晋镳, 张惠民, 朱士兴, 等. 蓟县震旦亚界的研究,前寒武地质研究-中国震旦亚界. 天津:科学技术出版社. 1980. 56-114.
    [174] 陈晋镳. 中朝准地台中—末元古代地质演化的初步探讨. 地质论评, 1983: 29(1): 1-8.
    [175] 陈丽蓉, 段伟明. 现代生物状海绿石钾-氩法地质测年问题的探讨. 科学通报, 1986, 20: 1576-1578.
    [176] 陈衍景. 熊耳群和西阳河群的构造背景. 地质论评, 1992, 38: 325-333.
    [177] 程国良, 孙宇航, 孙青格, 等. 显生宙中国大地构造演化的古地磁研究. 地震地质, 1995, 17(1): 69-78.
    [178] 程国良. 古地磁数据可靠性的试用判据. 地球物理学报, 1993, 36(1): 121-123.
    [179] 崔盛芹, 李锦蓉, 孙家树等. 华北陆块北缘构造运动序列及区域构造格局. 北京: 地质出版社. 2000.
    [180] 崔盛芹, 李锦蓉, 吴珍汉, 等. 燕山地区中新生代陆内造山作用. 北京: 地质出版社. 2002. 1-385.
    [181] 地质矿产部中国同位素地质年表工作组. 中国同位素地质年表. 北京: 地质出版社, 1987. 1-146.
    [182] 方大均, 郭亚滨, 谈晓东, 等. 华北板块中生代古地磁研究, 国际大陆岩石圈构造演化与动力学讨论会-第三届全国构造地质会议论文集. 北京:科学出版社. 1990. 182-192.
    [183] 方大钧, 朱志文, 郭亚滨. 苏北地区上前寒武系古地磁研究及我国南北方上前寒武系对比. 地质科学, 1983, (4): 324-336.
    [184] 高荣繁, 范义青.辽东半岛南部晚前寒武纪古地磁初步研究. 沈阳地质矿产研究所所刊, 1980, 第6 号: 122-140.
    [185] 关保德, 耿午辰, 戎治权, 等. 河南省罗圈组年龄. 前寒武纪地质, 1980, 1: 193-197.
    [186] 贵阳地球化学研究所. 从燕山地区震旦地层同位素年龄论中国震旦地质年代表. 中国科学, 1977, 2: 151-161.
    [187] 郭敬辉, 翟明国. 华北克拉通桑干地区高压麻粒岩变质作用的Sm-Nd 年代学. 科学通报, 2000, 45(19): 2055-2061.
    [188] 郭敬辉,翟明国,许荣华. 华北桑干地区大规模麻粒岩相变质作用的时代: 锆石U-Pb年代学. 中国科学(D 辑), 2002, 32(1): 10-18.
    [189] 韩以贵. 豫西地区熊耳群火山岩板块构造背景分析-地球化学和岩石学的新证据. 中国地质大学(北京)硕士论文, 2003. 1-71.
    [190] 河北省地质矿产局. 河北省北京市天津市区域地质志. 北京:地质出版社. 1989, 1-741.
    [191] 黄宝春, 魏青云, 朱日祥. 华北早古生代地层单元的岩石磁学特征研究. 地球物理学报, 1995, 38(6): 796-805.
    [192] 李怀坤, 李惠民, 陆松年. 长城系团山子组火山岩单颗粒锆石U-Pb 年龄及其意义.地球化学, 1995, 24: 43-48.
    [193] 李怀坤,李惠民,陆松年. 长城系团山子组火山岩单颗粒错石U-Pb 年龄及其意义. 地球化学, 1995, 24: 43-48.
    [194] 李江海, 侯贵廷, 黄雄南, 等. 华北克拉通对前寒武纪超大陆旋回的基本制约. 岩石学报, 2001, 17(2): 177-186.
    [195] 李江海. 华北克拉通对前寒武纪超级大陆旋回的基本制约. 岩石学报, 2001, 17: 177-186.
    [196] 李江海. 前寒武纪的超大陆旋回及其板块构造演化意义. 地学前缘, 1998, 5(增刊): 141-151.
    [197] 李明荣, 王松山, 裘冀. 京津地区铁岭组, 景儿峪组海绿石40Ar-39Ar 年龄研究. 岩石学报, 1996, 12(3): 416-423.
    [198] 李钦仲, 杨应章, 贾金昌. 华北地台南缘(陕西部分)罗圈组的时代及其沉积物.见《:前寒武纪地质》编辑委员会. 前寒武纪地质, 第1 号, 中国晚前寒武纪冰成岩论文集. 北京: 地质出版社, 1985. 163-182.
    [199] 林金录. 蓟县中、上元古界剖面的古地磁结果. 科学通报, 1988, 33: 207-210.
    [200] 陆松年, 李惠民. 蓟县长城系大红峪组火山岩的单颗粒锆石U-Pb 法准确定年. 中国地质科学院院报, 1991, 22: 137-145.
    [201] 陆松年, 杨春亮, 李怀坤, 等. 华北古大陆与哥伦比亚超大陆. 地学前缘, 2002, 9(4):225-233.
    [202] 陆松年, 张学祺, 黄承义, 等. 蓟县-平谷长城系地质年龄数据新知及年代格架讨论. 天津地矿所所刊, 1989, (23): 11-23.
    [203] 陆松年. 蓟县中-上元古界剖面同位素地质年代学进展. 见: 李清波主编, 现代地质学研究文集(上). 南京: 南京大学出版社. 1992. 122-129.
    [204] 马醒华, 杨振宇, 邢历生,等. 鄂尔多斯盆地二叠-三叠纪磁性地层特征的初步研究. 科学通报, 1992, 37(3): 252-255.
    [205] 乔秀夫, 高林志. 华北中新元古代及早古生代地震灾变事件及与Rodinia 的关系. 科学通报, 1999, 44(16): 1753-1757.
    [206] 乔秀夫, 高劢. 中国北方青白口系碳酸岩盐同位素测年及意义. 地球科学-中国地质大学学报, 1997, 22(1): 1-7.
    [207] 乔秀夫. 青白口群地层学研究.地质科学. 1976, 3: 246-265.
    [208] 任富根. 蓟县长城纪火山-侵入岩浆活动问题. 天津地质矿产研究所所刊,1986, 第16号: 109-122.
    [209] 孙大中, 陆松年. 华北地台的元古宙构造演化. 中国地质科学院院报, 1987, 第16 号: 55-69.
    [210] 孙枢, 从柏林, 李继亮. 豫、陕中晚元古代沉积盆地(一). 地质科学, 1981, (4): 314-322.
    [211] 孙知明, 杨振宇, 赵越, 等. 河北滦平盆地早白垩世古地磁结果的构造意义. 中国科学(D 辑), 1998, 28(增刊): 17-23.
    [212] 唐克东. 中朝板块北侧褶皱带构造演化及成矿规律. 北京大学出版社, 1992. 1-277.
    [213] 天津市地质矿产局. 天津市区域地质志. 北京: 地质出版社. 1992. 1-259.
    [214] 万渝生, 张巧大, 宋天锐. 北京十三陵长城系常州沟组碎屑错石SHRIMP 年龄: 华北克拉通盖层物源区及最大沉积年龄的限定. 科学通报, 2003, 48(18): 1970-1975.
    [215] 王长尧. 燕山常州沟早期古河流的厘定与古地理特征及其演化. 前寒武纪地质, 1986, 第3 号: 243-256.
    [216] 王鸿祯, 等. 中国及邻区大地构造划分和构造发展阶段. 见: 王鸿祯, 等. 中国及邻区构造古地理和生物古地理. 北京: 中国地质大学出版社. 1990. 3-34.
    [217] 王鸿祯, 史晓颖, 王训练, 等. 中国层序地层研究. 广州: 广东科技出版社, 2000. 1-457.
    [218] 王荃, 刘雪亚, 李锦铁. 中国华夏与安加拉古陆间的板块构造. 北京大学出版社. 1991. 1-151.
    [219] 王松山, 桑海清, 裘冀, 等. 蓟县剖面杨庄组和雾迷山组形成年龄的研究, 地球科学, 1995, 30(2): 166-173.
    [220] 王松山, 桑海清, 裘冀, 等. 京津地区长城系下伏变质岩系变质年龄及长城系底界年龄的厘定. 地质科学, 1995, 30(4): 348-354.
    [221] 王松山. 硅质岩及其流体包体的定年. 第四届同位素地质年代学学术讨论会论文(摘要)汇编. 1989. 24-25.
    [222] 王曰伦,陆宗斌,邢裕盛,等. 中国上前寒武系的划分和对比. 见: 中国地质科学院天津地质矿产研究所主编: 中国震旦亚界. 天津:天津科学技术出版社, 1980. 1-30.
    [223] 吴昌华, 钟长汀.华北陆台中段吕梁期的SW-NE 碰撞. 前寒武纪研究进展, 1998, 21: 28-50.
    [224] 吴汉宁, 朱日祥, 刘椿, 等. 华北地块晚古生代至三叠纪古地磁研究新结果及其构造意义. 地球物理学报, 1990, 33(6): 694-701.
    [225] 吴汉宁. 古地磁学在油气勘探中的应用-地磁大气空间研究及应用. 北京: 地震出版社. 1996.
    [226] 吴怀春, 张世红, 韩以贵. 白垩纪以来中国西部地体运动的古地磁证据和问题. 地学前缘, 2002, 9(4): 355-369.
    [227] 萧宗正, 杨鸿连, 单青生. 北京中生代地层及生物群. 北京:地质出版社. 1994. 1-135.
    [228] 邢裕盛. 中国的上前寒武系, 中国地层(3). 北京: 地质出版社, 1989, 1-314.
    [229] 徐备. 华北板块北缘元古代年代地层格架及其形成过程. 现代地质, 1999, 2: 219-220.
    [230] 阎国翰, 牟保磊, 许保良等. 燕辽-阴山三叠纪碱性侵入岩年代学和Sr, Nd, Pb 同位素特征及意义.中国科学(D 辑), 2000, 30(4): 383-387.
    [231] 阎玉忠, 刘志礼. 中国北方燕山盆地长城纪生物群落和古环境关系探讨. 微体古生物学报, 1998, 15(3): 249-266.
    [232] 杨振宇, 马醒华, 黄宝春, 等. 华北地块显生宙古地磁视极移曲线与地块运动. 中国科学(D 辑), 1998c, 28(增刊): 44-56.
    [233] 杨振宇, 马醒华, 孙知明, 等. 华北盆地南缘早古生代岩石的重磁化-古地磁结果及其意义. 中国科学(D 辑), 1998a, 28(增刊): 24-30.
    [234] 杨振宇, 马醒华, 孙知明, 等. 华北盆地南缘早古生代岩石的重磁化-岩石磁学结果. 中国科学( D 辑), 1998b, 28(增刊): 31-37.
    [235] 叶良辅. 北京西山地质志. 地质专报, 1920, 甲种第1 号.
    [236] 于荣炳. 沉积年代学中海绿石的应用问题. 地球化学, 1988, 4: 343-350.
    [237] 翟明国, 卞爱国. 华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解. 中国科学(D 辑), 2000, 30(增刊): 129-137.
    [238] 张长厚, 宋鸿林, 王根厚, 等. 燕山板内造山带中段近东西向中生代右行走滑构造系统. 地球科学-中国地质大学学报, 2001, 26(5): 464-472.
    [239] 张长厚, 吴淦国, 徐德斌, 等. 燕山板内造山带中段中生代构造格局与构造演化. 地质通报, 2004, 23(9-10): 864-873.
    [240] 张惠民, 张文治, Elston D P. 华北蓟县中、上元古界古地磁研究. 地球物理学报, 1991, 34 (5): 602-615.
    [241] 张惠民. 华北蓟县元古界长城系串岭沟组岩石的古地磁再研究. 物探与化探, 1995b, 19(2): 135-141.
    [242] 张惠民. 中国前寒武纪古地磁数据表. 地球学报, 1995a, 4: 441-448.
    [243] 张世红, 李海燕. 地磁学、古地磁学和环境磁学的研究新进展-第32 届国际地质大会学科总结和评述. 现代地质, 2004, 18(4): 415-422.
    [244] 张世红, 李正祥, 吴怀春, 等.华北地台新元古代古地磁研究新成果及其古地理意义. 中国科学(D 辑), 2000, 30(增刊): 138-147.
    [245] 张世红, 王鸿祯. 古大陆再造的回顾与展望. 地质论评, 2002, 48(2): 198-213.
    [246] 张世红, 王训练, 朱鸿. 碳酸盐岩磁化率与相对海平面变化的关系-黔南泥盆-石炭系例析. 中国科学, D 辑, 1999, 29(6): 558-566.
    [247] 张世红, 朱鸿, 孟小红. 杨子地块泥盆纪-石炭纪古地磁新结果及其古地理意义. 地质学报, 2001, 75(3): 304-313.
    [248] 张世红. 古地磁学的历史回顾和现状-兼论学科发展和人才培养问题. 长春科技大学学报, 2000, 30(专辑): 112-121.
    [249] 张文治, 李普. 中国蓟县震旦亚界的古地磁特征. 中国地质科学院院报, 天津地质矿产研究所分刊, 1980, 1(1): 111-122.
    [250] 张学祺. 蓟县中、上元古界页岩地层钾氩法年龄与粒级关系的讨论. 前寒武纪地质, 1987, 3: 293-300.
    [251] 赵国春, 孙敏, Wilde S A. 华北克拉通基底构造单元特征及早元古代拼合. 中国科学(D辑), 2002b, 7: 538-549.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700