轻型汽车侧偏与横摆联合控制ESP算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ESP电子稳定性程序是一种在极限转向工况下改善汽车方向稳定性和操控性能的汽车主动安全技术。
     本文在调研国内外ESP发展、研究与应用现状的基础上,进行了电子控制单元(ECU)硬件电路设计以及ESP侧偏与横摆联合控制算法等方面的研究。根据ECU硬件电路设计方案,在完成电路板制作之后,通过试验初步验证了ECU硬件电路的脉冲、模拟信号输入以及PWM、数字控制信号输出的功能;同时,将模糊、神经网络及PID控制器应用于ESP侧偏与横摆联合控制,设计相应的ESP控制器,将控制算法应用于目标车型,进行了离线仿真及硬件在环试验,验证了侧偏与横摆联合控制算法的有效性,仿真研究表明基于模糊和神经网络算法的侧偏与横摆联合控制的横摆角速度实际值跟踪名义值的效果优于模糊和PID控制器的控制算法。
ESP (Electronic Stability Program), through online vehicle sensor system, in real-time, monitors the intent of driver and driving condition, identifies and assesses the vehicle steering character and the trend of control-losing, through engine torque and wheels brake control, and prevents vehicle from understeering and oversteering. ESP enables vehicle to realize driver`s steering intent, and at the same time, improves its stability and direction performance. Since ESP was installed as vehicle initiative safety device, it has prevented a large number of traffic accidents, and has created significant social and economic benefits. At present, ESP, ABS (Anti-lock Braking System) and TCS (Traction Control System) have been integrated into a new generation of ESP, whose key technology and market have been mastered in Europe, North America, Japan, and other countries enjoying more developed auto industry. However, in China, both the ESP assembly rate and the research on ESP technological development are in the initial stages. In this paper, basis of foreign car ESP technology research experience, the content and implementation of research are settled, and according to“Research on Combined Slip and Yaw Control Algorithm of Electronic Stability Program System for Light-duty Vehicle”, the main contents are described as below:
     (a) ESP Electronic Control Unit (ECU) Design
     First, the ECU hardware circuit design programmer is given, according to the ECU functional requirements and the ESP input and output signal characteristics analysis. ECU using MC9S12DP512 produced by Freescale Semiconductor as MCU microcontroller, the clock circuits, power supply circuits and reset circuit of MCU minimum system are designed. Then, minimum system MCU peripheral hardware circuits,including HCU solenoid valve, electric pump drive circuits, vehicles state signal input port and control signal output port, are designed: HCU solenoid valve circuit uses TLE6216 smart quad channel low-side switch as drive chip, and electric pump circuit uses BTS6144 Smart Highside Power Switch as drive chip, produced by Infineon Semiconductor. Finally, based on CodeWarrior for HCS12 IDE(Integrated Development Environment), the hardware circuit function for inputting pulse signal, analog signal and outputting PWM signal, digital signal are tested by software programming.
     (b) Combined Slip and Yaw Control Algorithm of ESP Based on Fuzzy, Neural Network and PID Controller
     Based on combined slip and yaw control algorithm, fuzzy and PID controller of ESP & fuzzy and neural network controller of ESP are proposed. According to the ESP system requiring the realization of the driver`s desirable track and the maintaince of the stability of driving control, Yaw rate is presented as a key control variables in this paper, using yaw torque calculated by PID or neural network controller to maintain driving stability. Moreover, slip angle is an important parameter to describe driving track and to maintain control. For the reason that there are some deviations in slip angle measurement and estimate, so fuzzy controller is used to monitor slip angle. The slip angle fuzzy controller monitor, in real-time, adjusts nominal yaw rate correction factor, through combined slip and yaw control algorithm achieving vehicle stability driving in limited conditions.
     (c) Combined Slip and Yaw Control ESP Offline Simulation and Hardware In-the-loop Test Based on Fuzzy, Neural Network and PID Controller
     Through offline simulation and hardware in-the-loop test, the effectiveness of fuzzy and PID controller of ESP & fuzzy and neural network controller are tested. Based on identifying target model ESP offline simulation platform and hardware in the loop test bench, offline simulation environment and hardware in-the-loop test environment are built, through Goal-driven vehicle dynamics model integrated with the hardware and software of Control system. And Researches on the effectiveness and adaptability for the control algorithm by offline simulation and hardware in the loop test are presented.
     According to control algorithm offline simulation and hardware in the loop test, come the following conclusions:
     (1) After the ECU board completed, through tests, the effectiveness of inputting pulse signal, analog signal and outputting PWM control signal, digital signal have been tested. Further control algorithm software will be written and embedded into ECU with ESP hardware in-the-loop test bench.
     (2) Through Goal-driven vehicle dynamics model offline simulation and hardware in the loop tests, the effectiveness of fuzzy and PID controller of ESP & fuzzy and neural network controller of ESP have been tested, tests results show that:①the control algorithm of ESP can make the vehicle in accordance with the desirable track of the driver, and the deviation of the yaw rate nominal value and actual value is controlled in a certain range;②the absolute value of slip angle is restricted in smaller scope, by using the fuzzy controller③As BP neural network has good adaptability and online learning ability, and yaw toque is outputted by neural network controller directly, its effect of yaw rate nominal value tracking actual value is better than that of PID algorithm, and its timeliness is better than that of neural network PID algorithm.
     Compared with ABS and TCS, ESP can significantly improve stability and direction handling of the vehicle in limited condition by wheel brake control, etc, and cater to the development trend of automotive technology. The ECU hardware circuit design and combined slip and yaw control based on fuzzy, neural network and PID controller, provide some reference value for researching on“Combined Slip and Yaw Control Algorithm of Electronic Stability Program System for Light-duty Vehicle”.
引文
[1] Anton T van Zanten. ESP System:5 Years of Experience[C]//SAE paper 2000-01-1633.
    [2] NHTSA. Federal Motor Vehicle Safety Standards Electronic Stability Control Systems Controls and Displays. NHTSA document No.NHTSA–2007-27662:15-16.
    [3] 郭孔辉. 汽车操纵动力学[M]. 长春: 吉林科学技术出版社, 1991.
    [4] 余志生. 汽车理论[M]. 北京: 机械工业出版社, 2000: 103-131.
    [5] 郭孔辉, 丁海涛. 轮胎附着极限下差动制动对汽车横摆力矩的影响[J]. 汽车工程, 2002,24(2): 101-104.
    [6] Viviane Reding. Intelligent Car Brochure[EB/OL]. [2008-3-25]. http://ec.europa.eu/ information_society/activities/intelligentcar/docs/right_column/intelligent_car_brochure.
    [7] Van Zanten, A.T., et al. VDC System Development and Perspective[C]//SAE980235.
    [8] Claes Tingvall, Maria Krafft, AndersKullgren, Anders Lie. The Effectiveness of ESP (Electronic Stability Programme) in Reducing Real Life Accidents [C]. Proceedings of. The 18th Experimental Safety of Vehicles Conference, Nagoya, Japan. 19–22 May 2003.
    [9] Marcus Nuessle, Ruediger Rutz, Matthias Leucht. Objective Test Method to Assess Active Safety Benefits of ESP[EB/OL]. Mercedes Car Group, [2008-3-25]. http://www-nrd.nhtsa.dot.gov/pdf/nrd-01/esv/esv20/07-0230-O.pdf.
    [10] Papelis Y.E, Brown T, Watson G, Holtz D, Pan W. National Advanced Driving Simulator. University of Iowa,Document ID: N04-003-PR..
    [11] Rabe M. Symposium Automatisierungs and Assistenzsysteme for Transportmittel[EB/OL]. VW-Research, Germany, (2004-2-17) [2008-3-26]. http://www-nrd.nhtsa.dot.gov/pdf/ nrd-01/esv/esv20/print4.pdf
    [12] H Fennel, E L Ding. A Model-Based Failsafe System for the Continental TEVES Electronic-Stability-Program (ESP)[C]//SAE 2000-01-1635.
    [13] 韩建保,云志刚,陈厉兵. 汽车电子稳定系统ESP的工作原理及应用[J]. 汽车电器, 2004,(4): 29-31.
    [14] Dongshin Kim, Kwangil Kim, Woogab Lee, Inyong Hwang. Development of Mando ESP (Electronic Stability Program)[C]//SAE paper 2003-01-0101.
    [15] Bradley Scott Farrenkopf. Electronic suspension system control utilizing ABS system wheel speed sensors[C]. //SAE 1999-01-3079.
    [16] Mike Babala, Galry Kempen, Paul Zatyko. Trade-offs for vehicle stability control sensor sets[C]//SAE 2002-01-1587.
    [17] Aldo Sorniotti,Mauro Velardocchia. Hardware-In-the-Loop (HIL) Testing of ESP (Electronic Stability Program) Commercial Hydraulic Units and Implementation of New Control Strategies[C]//SAE 2004-01-2770.
    [18] Seung-Han You, Jin-Oh Hahn, Young Man Cho, Kyo Il Lee. Modeling and control of a hydraulic unit for direct yaw moment control in an automobile[J]. Elsevier Science Control Engineering Practice , 2006(14):1011-1022.
    [19] Alfred Kuttenberger, Sybille Eisele, Thomas Lich, Thorsten Sohnke, Jorge Sans Sangorrin, Michael Schmid and Marc Theisen. Improved Occupant Protection through Cooperation of Active and Passive Safety Systems – Combined Active and Passive Safety CAPS[C] //SAE 2006-01-1144.
    [20] Herbert Schuette, Peter Waeltermann. Hardware-in-the-Loop Testing of Vehicle Dynamics Controllers–A Technical Survey[C]//SAE 2005-01-1660.
    [21] G. Bahouth. Real World Crash Evaluation of Vehicle Stability Control (VSC) Technology[C]. 49th Annual Proceedings Association for the Advancement of Automitive Medicine,2005-9-12.
    [22] A DaiB. Model Based Calculation of Fricion Cruves between Tyre and Road Surface[C].IEEE, 1995.
    [23] Kiyoshi Wakamatsu, Yoshimistu Akuta, Manabu Ikegaya, Nobuyoshi Asanuma. Adaptive Yaw Rate Feedback 4WS with Friction Coefficient Estimator Between Tire and Road Surface[C].International Symposium on Advanced Vehicle Control, 1996.
    [24] Akitaka Nishio, Kenji Tozu, Hiroyuki Yamaguchi, Katsuhiro Asano, Yasushi Amano. Development of vehicle stability control system based on vehicle sideslip angleestimation[C]//SAE 2001-01-0137.
    [25] Anton Th van Zanten, Rainer Erhardt. Simulation for the development of the Bosch-VDC[C]//SAE 960486.
    [26] 司利增.汽车防滑控制系统—ABS与ASR[M].人民交通出版社, 1997.
    [27] Yoshiyuki Yasui, Hirofumi, Tsuyoshi Yoshida. Experimental Approach for Evaluating Tire Characteristics and ABS Performance[C]//SAE 2000-01-0110.
    [28] Damrongrit Piyabongkarn, Jae Lew, John Grogg, Robert Kyle. Stability-Enhanced Traction and Yaw Control using Electronic Limited Slip Differential[C]//SAE 2006-01-1016.
    [29] R.Willig, M.M?rbe. New Generation of Inertial Sensor Cluster for ESP-and Future Vehicle Stabilizing Systems in Automotive Applications[C]//SAE paper 2003-01-0199.
    [30] 吴艳华, 何天明. 新型汽车主动安全系统ESP[J]. 城市车辆, 2007(11): 39-41.
    [31] 韩建保. ESP确保汽车线内行驶和横向稳定性[J]. 世界汽车, 2003(2): 24-25.
    [32] Car ESP (Electronic Stability Program) Report, 2006-2007[EB/OL]. (2007-3-23) [2008-3-25]. http://www.okokok.com.cn/Abroad/Class121/Class91/200703/116610.html.
    [33] NHTSA. PROPOSED FMVSS No.126 Electronic Stability Control Systems[S]. 2006.8.
    [34] Stylish Dynamic Exclusive Experience the Drive That is BMW[EB/OL]. [2008-3-25]. http://www.bmw.com.au/common_content/models/bmw/price_options/2007-Sept-5Touring.pdf
    [35] Yasuji Mizutani, Chiaki Hamada, Akiyoshi Yamada, Takashi Satou. Development of New Brake Control System With Gear Pump Modulator[C] //SAE 2004-01-0253.
    [36] Volvo Pocket Guide 2003. Volvo Car Corporation[EB/OL].[2008-3-25]. http://www. volvoclub.org.uk.
    [37] Heinrich Huchtkoetter, Theodor Gassmann. Vehicle dynamics and torque management devices[C]//SAE 2004-01-1058.
    [38] Peter E Rieth, Ralf Schwarz. ESC II–ESC With Active Steering Intervention[C]//SAE 2004-01-0260.
    [39] 陈祯福. 汽车底盘控制技术的现状和发展趋势[J]. 汽车工程, 2006,28(2): 105-113.
    [40] 马云杰. 第二代汽车电子稳定程序ESPII[J]. 上海汽车, 2005(12): 30-32.
    [41] 高晓杰, 余卓平, 张立军. 基于车辆状态识别的AFS与ESP协调控制研究[J]. 汽车工程, 2007, 29(4): 283-291.
    [42] Youseok Kou, Wanil Kim, SangHo Yoon. Integration Chassis Control (ICC) Systems of Mando[C]//SAE 2004-01-2044.
    [43] E K Liebemann, K Meder, J Schuh, G Nenninger. Safety and Performance Enhancement: The Bosch Electronic Stability Control (ESP)[J]. Robert Bosch GmbH,Paper No.05-0471.
    [44] 宋健, 崔华锐, 王会义. 汽车液压ABS电磁阀电磁场动态特性的研究[J]. 公路交通科技, 2003,(2): 125-127.
    [45] Li Jun, Feng Jinzhi, Yu Fan and Zhang Jianwu. The rapid development of vehicle electronic control system by hardware-in-the-loop simulation[C]//SAE 2002-01-0568.
    [46] 李静, 徐斌, 张英峰,等. 车辆电子稳定性程序神经网络PID控制算法[J]. 吉林大学学报(工学版), 2007, 37(4): 742-744.
    [47] Li You-de, Liu Wei, Li Jing. Simulation of vehicle stability control system using fuzzy PI control method[C]//2005 IEEE International Conference on Vehicular Electronics and Safety, 2005.
    [48] 刘巍, 赵向东, 李幼德, 等. ESP硬件在环试验平台的研究与开发[J]. 汽车工程, 2007, 29(9): 809-811.
    [49] 刘志新. 越野汽车牵引力控制系统控制方法研究及仿真软件开发[D]. 长春: 吉 林大学, 2003.
    [50] 张志涌编著. 精通 MATLAB 6.5 版. 北京航空航天大学出版社, 2003.
    [51] 宋健, 李永. 汽车防抱死制动系统控制方法的研究进展[J].公路交通科技, 2002(6): 140-145.
    [52] 郭孔辉, 丁海涛, 刘 溧. 汽车ABS混合仿真试验台的开发与研究[J]. 中国机械工程, 2000, 11(12): 1417-1421.
    [53] 宋大凤, 李幼德, 李静, 等. 汽车牵引力控制软件在环仿真研究[J]. 农业机械学报, 2005, 36(8): 27-29.
    [54] 赵健, 李幼德, 李静, 等. 车辆牵引力控制系统原型样机的开发研究[J]. 汽车技术,2006(9): 1-5.
    [55] Andrea Fortina, Mauro Velardocchia, Aldo Sorniotti. Braking System Components Modelling[D]//SAE paper 2003-01-3335.
    [56] 刘刚, 宋健. EMB硬件在环仿真试验台[J]. 汽车工程, 2006, 28(10): 929-932.
    [57] Chris Line, Chris Manzie, Malcolm Good. Control of an Electromechanical Brake for Automotive Brake-By-Wire Systems with an Adapted Motion Control Architecture[C] //SAE2004-01-2050.
    [58] 沈辉 编著. 精通 SIMULINK 系统仿真与控制[M]. 北京大学出版社, 2003.
    [59] 尹泽明, 丁春利等编著. 精通 MATLAB 6[M]. 清华大学出版社, 2002.
    [60] 李志魁. 基于 CarSim 的整车动力学建模与操纵稳定性仿真分析[D]. 长春: 吉林大学, 2007.
    [61] 北京九州恒润科技有限公司. Tesis DYNAware--基于 Matlab/Simulink 的车辆动力学实时仿真模型[J]. 软件世界, 2004(3): 72-74.
    [62] Ganesh Babu M. Hardware-in-the-Loop Simulation (HIL) for Vehicle Electronics Systems Testing and Validation[C]//SAE 2005-26-304.
    [63] J R Rogers, K Craig. On-hardware optimization of stepper-motor system dynamics[J]. Mechatronics 15 (2005): 291–316.
    [64] Syed Nabi, Mahesh Balike, Jace Allen, Kevin Rzemien. An Overview of Hardware-In-the-LoopTesting Systems at Visteon[C]//SAE 2004-01-1240.
    [65] Aldo Sorniotti. Hardware in the Loop for Braking Systems with Anti-lock Braking System and Electronic Stability Program[C]//SAE 2004-01-2062.
    [66] Andreas Vath, Zijad Lem, Hubert M ancher, Matthias S ohn, Norbert Nicoloso, Thomas Hartkopf. Dynamic modelling and hardware-in-the-loop testing of PEMFC[J]. Journal of Power Sources 157 (2006): 816–827.
    [67] R M Moore, K H Hauer, G Randolf, M Virji. Fuel cell hardware-in-loop[J]. Journal of Power Sources 162 (2006): 302–308.
    [68] M Deppe, M Zanella, M Robrecht, W Hardt. Rapid prototyping of real-time control laws for complex mechatronic systems: a case study[J]. The Journal of Systems and Software70 (2004): 263–274.
    [69] 李升波, 王建强, 李克强. 硬件在环仿真试验台监控系统的设计与开发[J]. 系统仿真学报,2007, 19(16): 3683-3687.
    [70] 薛定宇,陈阳泉. 基于MATLAB/Simulink的系统仿真技术与应用[M]. 北京: 清华大学出版社, 2002.
    [71] Shuibo Zhenga, Houjun Tang, Zhengzhi Han, Yong Zhang. Controller design for vehicle stability enhancement[J]. Control Engineering Practice 14 (2006): 1413–1421.
    [72] Giuseppe Amato, Lutz K?ster. High Performance Code Generation for Audo, an Automotive Controller from Infineon Technologies[C]//SAE 2000-01-0393.
    [73] Deepa Ramaswamy, Ryan McGee, Shiva Sivashankar, Amit Deshpande, Jace Allen, Kevin Rzemien, Walt Stuart. A Case Study in Hardware-In-the-Loop Testing: Development of an ECU for a Hybrid Electric Vehicle[C]//SAE 2004-01-0303.
    [74] 赵健. 四轮驱动汽车 TCS 制动压力调节装置及附着系数分离路面控制方法的研究[D]. 长春: 吉林大学, 2003.
    [75] 马文席, 刘继锋. 从ABS防抱死系统到ASR、ESP[J]. 实用汽车技术, 2006(04): 5.
    [76] 郑凯. 基于MPC565的汽车总成控制器研究与设计[D]. 长春: 吉林大学, 2005.
    [77] Infineon(英飞凌)半导体公司. Braking(ABS\ESP). [2008-3-1]. http://www.infineon.com/cms/cn/product/applications/automotive/safety/braking1.html.
    [78] 郎志涛. 商用车ABS系统ECU的开发及硬件在环验证[D]. 长春: 吉林大学, 2006.
    [79] 丁志盛, 李华, 孙晓民. MPC555 微控制器与汽车电子[J]. 单片机与嵌入式系统应用, 2003(12): 5-8.
    [80] 潘凯, 张俊智, 甘海云,等. 基于MPC555的混合动力电动汽车整车控制器硬件系统设计[J]. 汽车工程, 2005,27(1): 20-27.
    [81] 吴进军. MPC555的发动机电控单元最小系统设计[J]. 单片机与嵌入式系统应用, 2006(3): 8-11.
    [82] 邵贝贝. 单片机嵌入式应用的在线开发方法[M]. 北京:清华大学出版社, 2004.
    [83] 杨国田, 白焰. 摩托罗拉68HC12系列微控制器原理应用与开发技术[M]. 北京: 中国电力出版社, 2003.
    [84] MOTOROLA. MC9S12DT128B Device User Guide V01.09. 2002.
    [85] 程军. 汽车防抱死制动系统的理论与实践[M]. 北京:北京理工大学出版社,1991.
    [86] 刘巍. 驱动工况汽车稳定性控制算法研究[D]. 长春: 吉林大学, 2004.
    [87] Y Shibahata, K Shimada, T Tomari. Improvement of Vehicle Maneuverability by Direct Yaw Moment Control[J]. Vehicle System Dynamics, 1993(22): 465-481.
    [88] 王文成. 神经网络及其在汽车工程中的应用[M]. 北京: 北京理工大学出版社, 1998:2-9.
    [89] 廖晓峰, 李传东. 神经网络研究的发展趋势[J]. 国际学术动态, 2006,(5): 43-44.
    [90] 周开利, 康耀红. 神经网络模型及其 MATLAB 仿真程序设计[M]. 北京: 清华大学出版社, 2005: 69-90.
    [91] 段文杰. 依维柯汽车ABS神经网络控制算法及虚拟仿真研究[D]. 长春: 吉林大学, 2006.
    [92] 董长虹. Matlab神经网络与应用[M]. 北京: 国防工业出版社, 2007: 68-71.
    [93] 徐镝. 后驱轻型客车ESP神经控制及压力估算算法研究[D]. 长春: 吉林大学, 2006.
    [94] 刘巍. 轻型汽车转向稳定性控制算法及硬件在环试验台研究[D]. 长春: 吉林大学, 2007.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.