用户名: 密码: 验证码:
Seismicity and stress-tensor inversion in
详细信息      ssa.geoscienceworld.org/content/89/3/811.full.pdf">PDF全文下载
摘要

d="p-1">Tectonic stress in the Pacific Northwest Washington is dominated by a N-S major compressive axis, σ<sub>1sub>, and a minor compressive axis, σ<sub>3sub>, which varies from E-W to near vertical. Some variations in this pattern occur in different parts of the region. In this study, we used 550 earthquakes in the central Washington Cascade Mountains to study, in detail, the uniformity of the stress tensor in this volcanic arc. Earthquakes from the Pacific Northwest Seismograph Network (<span class="sc">PNSNspan>) catalog were divided into several subsets based on epicentral and depth groupings, and stress-tensor inversions using the Gephart and Forsyth technique were computed for each group. As in previous similar studies, the maximum compressive stress axis, σ<sub>1sub>, is nearly horizontal and trending N-S to NNE-SSW in all but one subset. Shallower events directly under Mount Rainier have a near-vertical σ<sub>1sub>. For other subsets, the minimum compressive stress axis, σ<sub>3sub>, deviates from vertical to horizontal for different groups of events. In particular, events in the depth range of 10 to 14 km in the western Rainier seismic zone (<span class="sc">WRSZspan>) have near-vertical σ<sub>3sub> direction, whereas other depth ranges in this area show a near-horizontal, E-W σ<sub>3sub> orientation. We hypothesize that the change in orientation of σ<sub>3sub> in the 10 to 14 km depth range in the <span class="sc">WRSZspan> may be due to the influence of the nearby Mount Rainier magmatic system. Independent evidence for magma at this depth comes in the form of a few deep long-period (<span class="sc">LPspan>) events.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700