用户名: 密码: 验证码:
New constraints on Eocene extension within the Canadian Cordillera and identificati
详细信息   在线全文   PDF全文下载
摘要

The Okanagan Valley shear zone delineates the SW margin of the Shuswap metamorphic complex, the largest core complex within the North American Cordillera. The Okanagan Valley shear zone is a major Eocene extensional fault zone that facilitated exhumation of the southern Shuswap metamorphic complex during the orogenic collapse of the SE Canadian Cordillera when convergence at the western margin of North America switched from transpression to transtension. This study documents the petrology, structure, and age of the Okanagan gneiss, the main lithology within the footwall of the Okanagan Valley shear zone, and constrains its history from protolith to exhumed shear zone.The Okanagan gneiss is an ∼1.5-km-thick, west-dipping panel composed of intercalated orthogneiss and paragneiss in which intense ductile deformation of the Okanagan Valley shear zone is recorded. New U-Pb zircon ages from the gneiss and crosscutting intrusions constrain the development of the Okanagan gneiss to the Eocene, contemporaneous with widespread extension, intense deformation, high-grade metamorphism, and anatexis in the southern Canadian Cordillera. Thermobarometric data from the paragneiss domain indicate Eocene exhumation from between 17 and 23 km depth, which implies 64–89 km of WNW-directed horizontal extension based on an original shear zone angle of ∼15°.

Neither the Okanagan gneiss nor its protolith represents exhumed Proterozoic North American cratonic basement as previously postulated. New U-Pb data demonstrate that the protolith for the gneiss is Phanerozoic, consisting of Mesozoic intrusions emplaced within a late Paleozoic–Mesozoic layered sequence of sedimentary rocks.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700