Ultrasound, pH, and Magnetically Responsive Crown-Ether-Coated Core/Shell Nanoparticles as Drug Encapsulation and Release Systems
详细信息    查看全文
文摘
Core@shell nanoparticles with superparamagnetic iron oxide core, mesoporous silica shell, and crown ether periphery were fabricated toward drug delivery and tumor cell imaging. By the concept of nanovalve based on supramolecular gatekeeper, stimuli-responsive drug delivery nanosystems Fe3O4@SiO2@meso-SiO2@crown ethers were synthesized by (i) modified solvothermal reaction; (ii) sol鈥揼el reaction; and (iii) amide coupling reaction. The successful coupling of the dibenzo-crown ethers onto the mesoporous silica shell was confirmed by thermogravimetric analysis and Infrared spectroscopy. In this system, the 鈥淥N/OFF鈥?switching of the gatekeeper supramolecules can be controlled by pH-sensitive intramolecular hydrogen bonding or electrostatic interaction (such as metal chelating). Biological evaluation of the nanoparticles renders them noncytotoxic and can be uptaken by L929 cells. In this work, the antitumor drug (doxorubicin) loading and release profiles which were studied by the UV/visible absorption spectroscopy. The mechanism involves the best-fit binding of crown ethers with cesium or sodium ions at different pH values with ultrasonic wave in phosphate buffered saline (PBS). Magnetic resonance imaging analysis of the particles reveals a high relaxivity, rendering them potentially useful theranostic agents.

Keywords:

crown ether; drug carrier; magnetic resonance imaging; nanoparticle; ultrasound

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700