用户名: 密码: 验证码:
Penetratin-induced transdermal delivery from HII mesophases of sodium diclofenac
详细信息    查看全文
文摘
Penetratin, a cell penetrating peptide is embedded within a reversed hexagonal (HII) mesophase for improved transdermal delivery of sodium diclofenac (Na-DFC). The HII mesophase serves as the solubilization reservoir and gel matrix whereas penetratin is the transdermal penetration enhancer for the drug. The systems were characterized and the interactions between the components were determined by SAXS, ATR-FTIR and SD-NMR. High affinity of Na-DFC to glycerol monooleate (GMO) was revealed, associated with increasing the order within the water channels. This affinity is enhanced upon heating and seems to be associated with GMO dehydration. Penetratin (PEN) is entrapped at the hydrophilic region of the HII mesophase, between the GMO headgroups, reducing the order of the system and decreasing the size of the hexagonal domains.

The transdermal delivery rate of Na-DFC through porcine skin, from the HII mesophases, was enhanced by PEN and so also the cumulative transport crossing the skin. PEN induced accelerated drug diffusion through the stratum corneum, towards the different skin layers.

The transdermal delivery enhancement is explained from the results of the ATR-FTIR analysis. It seems that PEN accelerates the structural transition of skin lipids from hexagonal to liquid. The disordering results in enhanced diffusion of Na-DFC through the stratum corneum, followed by enhanced overall penetration of the drug.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700