用户名: 密码: 验证码:
Binding mode prediction of aplysiatoxin, a potent agonist of protein kinase C, through molecular simulation and structure-activity study on simplified analogs of the receptor-recognition domain
详细信息    查看全文
文摘
Aplysiatoxin (ATX) is a naturally occurring tumor promoter isolated from a sea hare and cyanobacteria. ATX binds to, and activates, protein kinase C (PKC) isozymes and shows anti-proliferative activity against human cancer cell lines. Recently, ATX has attracted attention as a lead compound for the development of novel anticancer drugs. In order to predict the binding mode between ATX and protein kinase Cδ (PKCδ) C1B domain, we carried out molecular docking simulation, atomistic molecular dynamics simulation in phospholipid membrane environment, and structure–activity study on a simple acyclic analog of ATX. These studies provided the binding model where the carbonyl group at position 27, the hydroxyl group at position 30, and the phenolic hydroxyl group at position 20 of ATX were involved in intermolecular hydrogen bonding with the PKCδ C1B domain, which would be useful for the rational design of ATX derivatives as anticancer lead compounds.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700