用户名: 密码: 验证码:
Climate variability and forecasting surface water recovery from acidification: Modelling drought-induced sulphate release from wetlands
详细信息    查看全文
文摘
Climate-induced drought events have been shown to have a significant influence on sulphate (SO42−) export from forested catchments in central Ontario, subsequently delaying recovery of surface waters from acidification. Field and modelling studies have demonstrated that water table drawdown during drought periods promotes oxidation of previously stored (reduced) sulphur (S) compounds in wetlands, with subsequent efflux of SO42− upon re-wetting. Although climate-induced changes in processes are generally not integrated into soil-acidification models, MAGIC (Model of Acidification of Groundwater in Catchments) includes a wetland compartment that incorporates redox processes driven by drought events. The potential confounding influence of climate-induced drought events on acidification recovery at Plastic Lake, south-central Ontario (under proposed future S emission reductions) was investigated using MAGIC and two climate scenarios: monthly precipitation and runoff based on long-term means (average-climate scenario), and variable precipitation and runoff based on the past 20 years of observed monthly data (variable-climate scenario). The variable-climate scenario included several periods of summer drought owing to lower than average rainfall and higher then average temperature. Nonetheless, long-term regional trends in precipitation and temperature suggest that the variable-climate scenario may be a conservative estimate of future climate. The average-climate scenario indicated good recovery potential with acid neutralising capacity (ANC) reaching approximately 40 μmolc L− 1 by 2020 and 50 μmolc L− 1 by 2080. In contrast, the forecasted recovery potential under the variable-climate scenario was very much reduced. By 2080, ANC was forecasted to increase to 2.6 μmolc L− 1 from − 10.0 μmolc L− 1 in 2000. Elevated SO42− efflux following drought events (introduced under the variable-climate scenario) has a dramatic impact on simulated future surface water chemistry. The results clearly demonstrate that prediction of future water quality, using models such as MAGIC, should take into account changes or variability in climate as well as acid deposition.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700