文章编号:1009-2722(2009)02-0008-06

东海海底三柱状岩心重矿物分布研究

孟建国1,金秉福2,苗丽华3,陈传华1

(1山东地震局泰安基准地震台泰安 271000;2 鲁东大学地理与规划学院 烟台 264025;3山东经济学院经济与城市管理学院 济南 250000)

摘 要:对东海沿岸陆架 CJ08-630、CJ08-923、CJ08-1185 3 个柱状岩心 56 个重矿物样品 63~125 μm 粒级重矿物的研究表明,重矿物种类有 56 种,最高含量可达 53.1%,平均含 量较低,为 8.5%。矿物组成以闪石类、帘石类、辉石类、片状矿物、自生黄铁矿及金属矿 物磁铁矿、褐铁矿等为主。重矿物来源复杂多样,包括陆源、自生等,其中沿岸河流输入物 是主要陆源矿物来源,此外还有沿岸和岛屿等的剥蚀物、冲刷物。沉积环境是影响重矿物 分布的主要因素。

关键词:柱状岩心;重矿物;沉积环境;东海 中图分类号:P736.3
文献标识码:A

海底沉积物中的矿物组分记录了沉积物的 来源、搬运和沉积过程以及沉积环境等多种信息^[1-4]。研究表明重矿物既能反映物源区的母 岩性质,又能反映沉积物在运移过程中的分异 作用^[5]。通过对其中重矿物组合以及某些重矿 物的比值、标志矿物等参数的研究,可以有效地 进行物源识别,再造沉积环境^[6,7]。前人曾分 析控制东海重矿物分布的因素^[8,9],对南海中 西部^[10-12]、珠江口^[13]和台湾海峡^[14]表层沉积 物的碎屑矿物特征进行过分析。本文在东海近 岸大陆架海域(水深不超过 200 m)采样,通过 对该海域 3 个柱状岩心 56 个重矿物样品进行 详尽的矿物研究,总结了重矿物分布的规律,并 对其沉积环境进行了分析。

收稿日期:2008-10-28

基金项目:国家自然科学基金项目(40076013);中国近海海洋综合调查与评价(908-01-CJ08)

作者简介:孟建国(1986—),男,助理工程师,主要从事地 壳形变及地层沉积研究.E-mail:meng8611@163.com

图 1 取样站位图 Fig. 1 Location map of sampling

1 样品来源和研究方法

研究样品采自东海 122°~123°14′E,30°~

31°N 的区域内(图 1),区内沉积物多属近岸陆 架沉积。本次研究共对 3 个柱状岩心样本 56 个重矿物物样品进行了鉴定分析(3 柱状样编 号分别为 CJ08-630、CJ08-923、CJ08-1185),层 位 0~190 cm 以 10 cm 深度为一取样单位,每 柱样各取样 19 处。样品的处理和分析方法按 海洋调查规范(GB/T13909-92)规定进行,所采 用的粒级为 63~125 μm 组分(该粒级重矿物 含量较高,见表 1)。样品用比重为 2.88 g/cm³ 的三溴甲烷(CHBr₃)重液分离成轻、重组分后, 重组分用体视显微镜和偏光显微镜进行研究, 鉴定的矿物颗粒数为 400 粒。其中不透明矿物 以体视显微镜鉴定为主,透明矿物采用油浸法 OLYMPUS 偏光显微镜下鉴定,并结合电子探 针、扫描电镜、能谱和 X 射线衍射分析。

表1 重矿物含量的统计学特征

Table 1	The statistical of	characteristics	of
	heavy mineral c	ontent	

粒级	0.25~0.125mm	0.125~0.063 mm	
样品数	458	458	
平均值 X	4.0(%)	8.5(%)	
极差R	26.1-0.1=26(%)	53.4-0.1=53.3(%)	
均方差 S	3.03	7.66	
变异系数 Cv	· 0 . 76	0.90	
频率分布	正态	正态	

2 柱状岩心的主要重矿物特点

通过分析研究,柱样岩心中含有重矿物 56 种。矿物组成以角闪石、绿帘石、透闪石、黝帘 石、石榴石、锆石、磷灰石、电气石、屑石、白云 母、黑云母、绿泥石、风化云母、普通辉石、紫苏 辉石、透辉石、钛铁矿、磁铁矿、黄铁矿为主;其 次为硬绿泥石、红柱石、金红石、褐铁矿、赤铁 矿、阳起石、橄榄石、菱镁矿;其余的矿物比较罕 见,如文石、软锰矿、磷钇矿、硅灰石等。全区重 矿物最高含量可达 53.1%,平均含量较低,仅 为 8.5%。

东海优势和特征的碎屑重矿物约分为8大 类,本文中 CJ08-630、CJ08-923、CJ08-1185 柱 样均取自东海近岸大陆架,位于长江口杭州湾 附近,重矿物种类基本符合东海总体分类,但受 近岸环境影响,表现出自有特征。重矿物来源 复杂,包括了陆源、自生等各种来源的矿物。陆 源碎屑矿物是经河流搬运到东海沉积下来的, 该类矿物含量高、分布广。自生沉积矿物是在 沉积物成岩早期,由生物化学作用和化学沉淀 作用形成的细粒矿物,为同生作用产物,常在特 定的海洋环境中形成和富集。

3 东海沿岸三柱状岩心重矿物的 比较分析

表 2 为取自东海 CJ08 区的 3 个海底柱状 岩心重矿物含量对照表,其值为纵向深度下重 矿物含量的平均值。不同种类矿物在纵向深度 上分布不同,有的均匀分布,有的则波动性很 大,这与采样区所处的环境受到来自各个地质 作用影响不同有关^[15]。下面就三柱样部分主 要或特征性矿物含量、分布进行对比分析,并通 过借鉴相关研究成果,对其区域沉积环境、沉积 过程进行推断。

从整体上看,CJ08-630、CJ08-923 柱状样 品从重矿物组成、分布以及含量上基本相似, 两样品采集区域所处的环境大体相同,属于 受相同因素影响下的沉积作用。而 CJ08-1185 柱状样则表现出与前面两柱样不同的特 点,具体体现在最高含量重矿物、重矿物分布 以及各种矿物含量上。可以得出 CJ08-1185 柱样所受的环境影响不同于前两者,现就各 柱样主要特征矿物在深度上的含量分布进行 分析(见图 2~5)。

CJ08-1185 尤其富含自生黄铁矿,自生黄 铁矿的形成是在浅部埋藏时通过碎屑铁矿物和 1%

氢硫化物(由细菌和层间溶液中的硫酸盐的还 原反应产生)之间的反应而生成^[16]。由于高沉 积速率阻碍了沉积物表面容易分解的有机物质 的氧化,所以高黄铁矿含量经常与高沉积速率 相关系^[17],自生黄铁矿一般在低能、有机质含 量较高、弱碱性等环境下形成^[18]。,

表 2 东海 CJ08 区 3 个海底柱状 岩心重矿物含量数据表

 Table 2
 Heavy mineral content of three submarine

 cylindrical cores in CJ08 area of East China Sea

矿物名称	CJ08-630	CJ08-923	CJ08-1185
辉石类	3, 979	3, 787	1,605
闪石类	44. 301	47.463	24, 619
绿帘石	8. 596	9. 243	7.491
褐铁矿	4. 509	8. 687	2. 584
钛铁矿	2. 441	0. 806	1.634
磁铁矿	1. 453	0.446	0.567
自生黄铁矿	3. 339	1,699	48.397

从闪石类矿物含量分布来看三柱样区均属 于中值区,进一步验证了闪石类是东海陆架物 源的特征矿物^[19]。但 CJ08-1185 柱状样区明 显少于前两区,说明 CJ08-1185 柱状样区受陆 架物源影响要明显小于 CJ08-630、CJ08-923 柱 状样区,这也证实了 CJ08-1185 柱状样区水动 力环境弱于其他区域,属于过渡性区域。

如图 2 所示, 辉石类重矿物在 CJ08-630、 CJ08-923、CJ08-1185 三柱状岩心平均含量分 别为 3.979 5%、3.786 8%、1.605%, 辉石类矿 物含量普遍较低, 其中 CJ08-630、CJ08-923 大 体相似, 均高于 CJ08-1185。在 CJ08-630、 CJ08-923 中辉石类矿物随深度变化波动较大, CJ08-1185 中含量较均匀。CJ08-630 柱样最大 值为 6.3%, 最小值为 2%; CJ08-923 柱样最大 值为 6.86%最小值为 1.24%; CJ08-1185 柱样 最大值为 3.59%, 最小值为 0.61%。

Fig. 2 Pyroxene minerals change with depth in core

CJ08-630, CJ08-923, CJ08-1185 of the East China Sea

Fig. 3 Amphibole minerals change with depth in core CJ08-630, CJ08-923, CJ08-1185 of the East China Sea

图 3 中闪石类重矿物在三柱状岩心平均含 量分别为 44.3005%、47.4626%、24.6185%, 所有重矿物中闪石类矿物含量最高,其中 CJ08-630、CJ08-923 大体相似,均高于 CJ08-1185;在 CJ08-630、CJ08-923 中闪石类矿物随 深度变化不大,但在 CJ08-630 中 30 cm 深处含 量突然减少。CJ08-1185 中含量波动较大。 CJ08-630 柱样最大值为 55.93%,最小值为 18.66%;CJ08-923 柱样最大值为 61.67%,最 小值为 26.03%;CJ08-1185 柱样最大值为 45.86%,最小值为 5.6%。

图 4 中自生黄铁矿在 CJ08-630、CJ08-923、 CJ08-1185 三柱状岩心平均含量分别为 3.3395%、1.6989%、48.3965%。CJ08-630、 CJ08-923含量普遍较低,且大体相似,柱样上 半部含量稀少,分布均匀,下半部波动较大,均 高于平均水平。CJ08-1185 中含量很高,且高 于闪石类矿物,在纵向分布上呈不均匀态势。 CJ08-630 柱样最大值为 11.46%,最小值为 0.25%;CJ08-923 柱样最大值为 5.64%,最小 值为 0%;CJ08-1185 柱样最大值为 85.55%, 最小值为 10.37%。

图 5 中褐铁矿在 CJ08-630、CJ08-923、CJ08-1185 三柱状岩心平均含量分别为 4.5085%、 8.6874%、2.5835%。样品中褐铁矿含量较低, 其中 CJ08-630、CJ08-923 大体相似,在上半部有 一高值区,随后以低值均匀分布,但 CJ08-923 最 下端呈现一高值区。CJ08-1185,则与前者相反, 上半部以低值均匀分布,含量极少,下部末端出 现一高值区。CJ08-630 柱样最大值为 22.67%, 最小值为 0.77%; CJ08-923 柱样最大值为 17.53%,最小值为 2.33%; CJ08-1185 柱样最大 值为 21.64%,最小值为 0%。 综上所述,结合相关年代数据 CJ08-1185 柱样区沉积速率明显高于 CJ08-630、CJ08-923 柱样区,且 CJ08-1185 柱样区处于一低能、有机 质含量较高的弱碱性环境。由于三柱样区相距 不远且远离河口区,水动力减弱,碎屑矿物粒级 细小,风化碎屑和片状矿物含量高,自生黄铁矿 在局部海区富集,这也表明沉积物由氧化环境 向弱氧化、弱还原环境转变,甚至在局部出现还 原环境^[20]。故由 CJ08-630、CJ08-923 柱样区向 CJ08-1185 柱样区呈现沉积物由氧化环境逐渐 向还原环境转变、由一般高能区向低能环境转 变、由有机质含量较低向含量较高转变。

4 沉积环境意义

控制重矿物分布的因素很多,如物源来源、 水动力状况及地貌条件等。物质来源不同,重 矿物的种类和含量也不一样。在同一物源补给 的条件下,由于水动力和地貌类型不同,重矿物 也会发生富集和分散^[4]。

沉积环境是影响沉积物分布的主要因 素^[5]。研究区内重矿物的分布受到水动力、物 源等条件的影响^[21,22],而独特的沉积环境则控 制着本区的重矿物分布。重矿物的特征、分布 和含量变化的统计分析表明,其成分复杂,有陆 源、自生等各种来源的矿物^[23,24]。

4.1 河流的影响

沿岸河流中重矿物组合类型和特征可以揭 示河流输入物对海区沉积物的贡献和对重矿物 分布的影响^[24, 25]。通过与东海沿岸各河流主 要和特征矿物含量均值表^[25]的对比。可以看 出,河流中矿物组成与东海的陆源矿物组成基 本一致。资料数据表明东海陆源碎屑矿物组合 面貌与长江和黄河的基本类似,即都是以角闪 石、绿帘石和片状矿物为主。这一事实表明长 江、黄河的输入物是东海陆源的碎屑沉积物的 主要物质来源。长江、黄河每年向东海输入数 亿 t 泥沙,它的影响显然是全局性的,南段各河 流输沙量很小,其影响是区域性的。河流泥沙 入海后,有沿岸南移的趋势^[15]。

4.2 沉积环境的影响

东海中外陆架区为现在河流泥沙不能到达 的无沉积区,主要是海底残留沉积区的侵蚀产 物。这些地段残留着晚更新世低海面时的粗放 沉积物,由于底流的侵蚀和筛选作用,残留沉积 区中细的和轻的物质将被迁移到现代沉积区, 但这种作用过程是缓慢和微弱的^[15]。沉积环 境的理化因素,主要控制自生矿物的生成^[25]。 CJ08-1185 柱样丰富的自生黄铁矿含量远远超 过了 CJ08-923、CJ08-630 柱样,充分说明了 CJ08-1185 柱样所处的地理位置环境的理化因 素是触及环境的主要因素。

5 结论

东海海底通常由性质不同的现代、混合、残 留沉积物所组成。这种成分格局显然与东海陆 架环境演变有关。矿物组合特点是既有大量不 稳定的柱状矿物闪石和帘石,又有较多性质稳 定的、等粒状的、密度大的金属矿物和石榴石。 自晚更新世以来,东海陆架一直是长江河系沉 积作用活跃的场所。全新世时,黄河又曾两度 从苏北入东海。因此,可以认为,长江物源对东 海陆架沉积过程的影响是全区性的,而黄河影 响所及则主要是东海北部地区。然而,长江与 黄河河系沉积物中矿物组合差别跟东海重矿物 之地区性与区域性变化,除与物源有关外,主要 与海底一直进行着的各种地质作用有关。

(1) 三柱样岩心中重矿物有 56 种。全区 重矿物最高含量可达 53.1%;平均含量较低, 仅为 8.5%。矿物组成以闪石类、帘石类、辉石 类、片状矿物、自生黄铁矿及金属矿物磁铁矿、 褐铁矿等为主。重矿物来源复杂,包括了陆源、 自生等。

(2)沉积环境是影响重矿物分布的主要因素。陆源重矿物主要来源于陆上各种岩石的物

理风化产物,经河流搬运到东海沉积下来,陆源 碎屑矿物常具有风化、搬运和磨蚀的痕迹。由 CJ08-630、CJ08-923 柱样区向 CJ08-1185 柱样 区呈现沉积物由氧化环境逐渐向还原环境转 变、由一般高能区向低能环境转变、由有机质含 量较低向含量较高转变的趋势。

参考文献:

- [1] Bayhan E, Ergin M, Temei A, et al. Sedimentology and mineralogy of surficial bottom deposits from the Aegean-Canakkale-Marmara transition (Eastern Mediterranean): effects of marine and terrestrial factors[J]. Marine Geology, 2001, 175, 297-315.
- [2] Diekmann B, Kuhn G. Provenance and dispersal of glacial-marine surface sediments in the Weddell Sea and adjoining areas, Antarctica, ice-rafting versus current transport[J]. Marine Geology, 1999, 158(1-4); 209-231.
- [3] Schafer J, Dorr W. Heavy mineral analysis and typology of detrital zircons; a new approach to provenance study (Saxothuringian Flysch, Germany) [J]. Journal of Sedimentary Research, 1997, 67(3), 451-461.
- [4] 石学法.海洋沉积环境研究的基本思想[J].海洋科学, 1992,16(2):22-24.
- [5] 杨群慧,林振宏,等.南海东部重矿物分布特征及影响因 實[J].青岛海洋大学学报,2002,11(6):956-964.
- [6] 佩蒂庄FJ.砂和砂岩[M].北京:科学出版社,1977.
 237.
- [7] 林振宏, 吕亚男. 冲绳海槽中部表层沉积物的重矿物分 布和来源[J]. 青岛海洋大学学报, 1996, 26(3): 361-368.
- [8] 王先兰,等.从统计分析看控制东海重矿物分布的因素
 [J].海洋学报.1982,4(1):65-77.
- [9] Lmbric J, Van Andel T H. Statistical analysis to see control of heavy minerals in the Sea [J]. Geological Society of America Bulletin, 1964, 1 131-1 156.
- [10] 陈丽蓉,徐文强,申顺喜,等.南海北部和北部湾沉积物

中的矿物组合及其分布特征[J].海洋科学,1986,10 (3):6-10.

- [11] 苏广庆,王天行.南海中北部表层沉积物的矿物沉积 [J].台湾海峡,1992,11(2):118-124.
- [12] 李志珍.南海中部表层沉积物中的碎屑矿物及其受控因素[J].东海海洋,1987,5(1-2):136-143.
- [13] 朱素琳,梁百和,吴华新,等.珠江口及邻近海岸表层沉 积物重矿物的初步研究[J].海洋通报,1983,2(1):22-29.
- [14] 陈华胄.台湾海峡表层沉积物中重矿物特征及其物质 来源[J].台湾海峡,1993,12(2):136-143.
- [15] 金翔龙.东海海洋地质[M].北京:海洋出版社,1992.
- [16] 王昆山,等.东海 DGKS9617 岩心重矿物及自生黄铁矿 记录[J].海洋地质与第四纪地质,2005(4):43.
- [17] Rothwell R G. Minerals and mineraloids in marine sediments-an optical identification guide [M]. Elsevier Applied Science, 1989, 161-166.
- [18] 朱而勤.海洋自生矿物[M].北京:科学出版社,1988: 46-48.
- [19] 王昆山,等.长江水下三角洲沉积物的重矿物分布及组 合[J].海洋地质与第四纪地质.2007(1):11-12.
- [20] 严肃庄,胡方西,钱塘江河口区重矿物特征及其与动力 环境的关系[J].华东师范大学学报(自然科学版), 1986(4):86.
- [21] 李志珍,张富元,南海深海铁锰微粒的元素地球化学特征[J],海洋通报,1990,9(6),41-50.
- [22] 杨群薏,林振宏,张富元,等、南海中东部表层沉积物矿 物组合分区及其地质意义[J].海洋与湖沼,2002,33 (6):27-35.
- [23] 冯文科,薛万俊,杨达灏,南海北部晚第四纪地质环境 [M].广州:广东科技出版社,1988:156-162.
- [24] 汪品先.十五万年来的南海[M].上海: 同济大学出版 社,1995:12.
- [25] 洪辉亮,陈 峰.九龙江一岩心的重矿物组合[J].台湾 海峡.2003(1):68-69.