青城子小佟家堡子、林家金矿成矿流体 特征及成矿机制

代军治1,2),王可勇2),杨言辰2),李基宏3)

1) 中国地质科学院矿产资源研究所,北京 100037;

2) 吉林大学地球科学学院,长春,130061;3) 中国地质调查局,北京,100011

内容提要:小佟家堡子、林家金矿是青城子铅锌、金、银矿集区的中一大型金矿床,金矿床与沉积一变质期硅化 岩关系密切。通过与矿区尖山岩体、新岭岩体中流体包裹体对比研究表明,金矿床与尖山岩体中主要发育水溶液包 裹体,极少量的 CO₂ 包裹体、含 CO₂ 三相包裹体,而新岭岩体除发育以上包裹体外,还发育含子矿物多相包裹体。测 温结果显示金矿床成矿流体温度为 110~335℃,盐度 3.9%~16.2% NaCleq。拉曼光谱分析表明金矿床流体成分以 H₂O 为主,少量的 CO₂、CH₄ 等气体,表明成矿流体属 NaCl—H₂O 体系。金矿床与尖山岩体中流体包裹体温度、盐度 及成分相近,推断成矿流体主要来自沉积一变质期。

关键词:小佟家堡子;林家金矿床;流体包裹体;成矿流体;成矿机制

众所周知,许多矿床的形成是与流体的作用分 不开的。地壳中各种来源流体,在地热增温或岩浆热 液动力条件影响下发生迁移,在有利的构造、岩性部 位沉淀成矿。现今保存于自然界各类岩石和矿物中 的流体包裹体,是地史时期其所经历的构造一热事 件中活动热流体的唯一天然样品(Roedder,1979)。 因此,通过流体包裹体研究可获得其它任何途径都 无法取得的有关古地质流体的重要信息。青城子地 区在约 20 平方千米范围内,分布有大、中、小型 Pb、 Zn 矿床 12 个,大型金、银矿床各 1 处,中小型金矿 床多处,是集不同矿种于一区的重要成矿集中区(图 1)。长期以来关于该区金矿床的成因一直是争论的 焦点。如古元古代喷流一沉积矿床[●]、微细浸染(卡 林)型金矿床(刘国平等,1998)、浅成低温热液渗滤 型银矿床(王文清等,2000)、浊积岩型矿床(陈江, 2000)及岩浆热液成矿(魏民⁹)等。本文通过流体包 裹体研究其成矿流体特征,探讨成矿物质来源及其 成矿机制,这对推动该区多金属成矿作用理论的发 展及找矿工作将产生积极作用。

1 矿床地质概况

小佟家堡子、林家金矿床大地构造位置隶属于 古元古代辽东裂谷轴部凹陷带。辽东裂谷是在华北 太古代克拉通基底上发展起来的的陆间裂谷,经历 了 2500~1900Ma 的漫长演化历史,沉积了巨厚的 辽河群地层(张秋生等,1988;刘国平等,2001;陈荣 度,1984)。其下部为浪子山组和里尔峪组偏碱性火 山岩一火山碎屑岩建造;中部为大石桥组碳酸盐岩 建造;上部为盖县组粘土岩一陆源碎屑岩建造(陈荣 度,1984;张秋生,1988)。

区内出露一套属元古代辽河群变质岩系的高家 峪组、大石桥组及盖县组地层。赋矿岩石主要为大石 桥组三段四层、三段五层的黑云变粒岩、硅化大理岩 及其与盖县组云母片岩接触部位的层间破碎带中。 层间破碎带已全部或大部分被强烈硅化岩取代,并 形成硅质团块(图 2-a)。矿区内构造以尖山子 NW 向断裂为典型,该断裂带南起杨家岭,经小佟家堡子 北侧、桃源,向北西方向延伸至白云金矿,断续延长 15 km,是矿区内的主要金矿控矿构造带,沿该断裂 带分布有小佟家堡子、林家、桃源、白云等矿床。该断 裂带局部侵入了中元古代钠质花岗岩(刘国平等, 2001)。区域地球化学异常表明金异常明显受尖山子 断裂控制,区内微细粒硅质岩也主要受该断裂控制 (刘国平等,1998)。元古代和中生代矿区内岩浆活动 比较强烈,主要有古元古代朱家堡子钾质花岗岩,中 元古代大顶子、尖山子、方家隈子、石家岭等钠质花

注:本文为吉林大学科研启动基金和中国主要金属矿床模型研究(编号 1212010634001)的成果。

收稿日期:2006-06-15;改回日期:2006-09-08;责任编辑:章雨旭。

作者简介:代军治,男,1978年生。在读博士研究生,现主要从事金属矿床及成矿规律研究。Email: daijunzhi@163.com。通讯作者:王可勇, 130061,长春市建设街 2199号,吉林大学朝阳校区地球科学学院矿床教研室。

图 1 青城子矿田地质简图(据薛春纪等,2003 有所修改)

Fig. 1 Geological map of the Qingchengzi orefield(Modified from Xue Chunji et al., 2003)
1一白垩纪火山岩; 2~4-江河群; 2 一盖县组云母片岩, 3-大石桥组大理岩, 4-浪子山组变粒岩; 5-印支期第二次侵人花岗岩; 6-印支期第一次侵人花岗岩; 7-中元古代钠质花岗岩; 8-古元古代钾质花岗岩; 9-铅锌矿床; 10-银矿床; 11-金矿床; 12-断裂
1-Cretaceous volcanic rock; 2~4-Liaohe Group: 2-mica schist of Gaixian Formation, 3-marble of Dashiqiao Formation, 4-granulitite of Langzishan Formation; 5~6-granite; 5-the second stage of Indosinian, 6-the first stage of Indosinian; 7-Mesoproterozoic sodium granite; 8-Paleoproterozoic potassic granite; 9-lead-zinc deposit; 10-silver deposit; 11-gold deposit; 12-fault

岗岩,中生代双顶沟、新岭斑状、似斑状中酸性花岗 岩。大顶子岩体是辽东裂谷造山带内出露面积最大 的钠质花岗岩,位于朱家堡子钾质花岗岩的北接触 带,周围有尖山子、方家隈子、石家岭等钠质花岗岩 的小岩株侵入,侵位时代为1740~1621Ma(K-Ar 法,芮宗瑶等,1994)。尖山子花岗岩,岩体形态为长 透镜状,延长1100m,幅宽100m,出露面积0.1km², 岩性单一,两侧大理岩中有铅、锌矿化和铁锰碳酸盐 化,花岗岩本身也有破碎和高岭土化。双顶沟、新岭 斑状、似斑状花岗岩呈岩体或岩基产出,侵位时代分 别为230.7±5Ma、217.6~226.7Ma(K-Ar法,芮宗 瑶等,1994)。

小佟家堡子、林家金矿床经历了区域沉积一变 质(变形)和热液叠加改造两大成矿期。受早期区域 沉积一变质作用强烈的改造,矿区常见有大量的层 纹状、条带状矿石(图 2-b,c),矿体呈似层状、扁豆 状,与围岩没有严格界线;晚期热液叠加作用在矿区 改造较弱,仅见少量乳白色石英微细脉(小于 0.2mm)顺层或穿切早期层纹状、条带状矿石。金矿 床矿石主要为含金硅化岩,矿物组成简单,硫化物较 少(少于 5%),主要为变胶状、镶边状黄铁矿和针柱 状、针状毒砂,有用矿物为金银矿和银金矿,脉石矿 物主要是石英、白云石及少量绢云母和石墨。野外及 镜下发现硫化物多呈细条纹状顺地层产出(图 2-b、 c),反映层控的特点。矿石中金主要是不可见金(占 80%),可见金粒度一般 0.001~0.01mm,最大 0.03mm,主要赋存在硫化物(尤其是毒砂),经计算 金品位与毒砂呈正相关性,相关系数 0.87~0.96[®]。 围岩蚀变主要有硅化、钾化、碳酸盐化,其中,硅化与 钾化作用与金成矿关系密切。研究其内流体包裹体 的特性,有助于了解该区金矿床成矿流体来源及其 成因机制。

2 流体包裹体研究

本文的主要研究对象是小佟家堡子一林家金矿 不同成矿阶段含金硅化岩。样品主要采自大石桥组 三段四层、三段五层及其与盖县组接触部位的井下 巷道中。主要进行了流体包裹体岩相学、显微测温、

图 2 小佟家堡子一林家矿床主要矿石显微照片 Fig. 2 Micrograms of ores of Xiaotongjiabuzi and Linjia gold deposits (a)一硅质团块;(b)-绢云母石英片岩;(c)-顺地层产出的硫化物 (a)-siliceous cakes; (b)-mica-quartz schist; (c)-sulfide distributed along stratum

激光拉曼光谱成分分析的研究,研究工作在吉林大 学地球科学学院地质流体实验室完成。同时为了便 于对比分析,作者还采集了区内尖山及新岭岩体岩 石样品进行流体包裹体综合研究。

2.1 流体包裹体岩相学研究

镜下观察表明,小佟家堡子、林家金矿床、尖山

及新岭岩体中发育较丰富的原生流体包裹体。依其 室温下的相态特征,这些原生流体包裹体主要为水 溶液包裹体、CO2 包裹体、含 CO2 三相及含子矿物 多相包裹体。现分述如下:

I:水溶液包裹体。室温下由纯水溶液相或气 液两相组成,气液比一般在5%~20%,多数在10%

图 3 小佟家堡子、林家金矿与尖山、新岭岩体流体包裹体显微照片 Fig. 3 Micrograph of fluid inclusions in Xiaotongjiabuzi, Linjia gold deposits and Jianshan, Xinling pluton (a)、(b)—小佟家堡子水溶液包裹体;(c)—林家水溶液包裹体;(d)—尖山水溶液包裹体;(e)—新岭 CO₂ 包裹体及水溶液包裹体; (f)—新岭含子矿物多相包裹体(L—液相;V—气相;S—子矿物)

(a), (b), (c), (d)— aqueous inclusions in Xiaotongjiabuzi, Linjia gold deposits and Jianshan pluton, respectively; (e)—carbon dioxide inclusions and aqueous inclusions in Xinling pluton; (f)—daughter crystal-bearing three-phase inclusions

in Xinling pluton(L-liquid; V-gas; S-daughter mineral)

士,大小一般为 3~18μm,个别达 20~30μm。常见 形态为负晶形、不规则四边形、三角形等,随机成群 或独立分布(图 3-a、b、c、d、e)。该类包裹体在各个矿 床和岩体中都发育,只不过新岭岩体中的水溶液包 裹体在气液比和大小上较小佟家堡子、林家金矿及 尖山岩体中大。

I: CO₂包裹体。室温下呈纯 CO₂ 液相或 CO₂ 气液两相。该类包裹体主要为富 CO₂ 液相,少量富 CO₂ 气相,气相 CO₂ 所占比例一般为 10%~40%。 该类包裹体大小一般在 5~20μm,多数在 8~ 15μm,其形态为椭圆形、负晶形、不规则四边形及它 形。II型包裹体主要发育于小佟家堡子和林家金矿 热液叠加阶段和新岭岩体中。

■: 含 CO₂ 三相包裹体。室温下呈 L_{CO_2} 、 V_{CO_2} 、 水溶液三相或 L_{CO_2} 相与水溶液两相,后者在降温至 $10℃左右出现 V_{CO_2}$ 相而变成三相包裹体。CO₂ 相所 占体积在 $40\% \sim 80\%$ (图 3-e)。该类包裹体大小一 般为 $4 \sim 12 \mu m$,形态为椭圆形、次圆形、菱形。 II 型 包裹体多见于新岭岩体中,区内金矿发育较少;

Ⅳ:含子矿物多相包裹体。室温下由液相、气相、子矿物晶体多相组成,其大小一般为 6~20μm, 多数大小在 6~12μm。该类包体形态多为椭圆形及 长条状,气液比相近,一般为 5%~10%。大多数该 类包裹体只含一个子矿物,偶见含两个子矿物的包 裹体(图 3-f),该类包裹体仅发育于尖山岩体中。

岩相学研究表明,小佟家堡子、林家金矿床及尖 山岩体中流体包裹体以水溶液包裹体为主,少量的 CO₂包裹体、含 CO₂ 三相包裹体(数量占整体的 5% ±)。新岭岩体中以上各类包裹体都发育,其中含子 矿物多相包裹体占其内流体的 20%±。

2.2 流体包裹体显微测温研究

用于包裹体显微测温分析仪器为 Linkam THMS-600型冷热台,其温度范围为-180~ 600℃。测试前用人造纯 H₂O 及 25% H₂O—CO₂ 包 裹体(国际标样)进行了系统校正,误差 0.1℃±。测 定结果见表 1。

(1) 小佟家堡子、林家金矿床矿石石英中 I 类 包裹体冷冻-升温过程中观测到少量包裹体初熔现 象, 初熔温度值-21.4~-24.6℃, 略低于纯 NaCl-H₂O 溶液标准低共熔温度值-20.8℃,反映 热液中存在 Na+、K+、Ca2+、Mg2+等多种阳离子成 分(Shepherd 等,1985;张文淮等,1993)。包裹体冰 点消失温度值-2.33~-12.3℃,相应流体盐度为 3.9%~16.2% NaCle,多数盐度值集中于 6.5%~ 10.5% NaCleg。包裹体以均一至液相方式为主,均一 化温度变化范围为 110.4~335.2℃,温度峰值为 150~190℃。依据盐水溶液包裹体温度-密度关系 方程(刘斌等,1999),估算热液密度为 0.77~1.02 g/cm³,平均密度 0.95 g/cm³。其 Ⅱ 类包裹体升温过 程中未能检测出笼形物消失温度,包裹体以完全均 一至 CO₂液相方式为主,完全均一温度在 287.6~ 326.5℃。Ⅰ类与类包裹体均一温度存在一定的差 异,反映两者属于不同的成矿期。

(2) 尖山岩体中 I 类包裹体冰点消失温度为 -1.2~-18.0℃,个别冰点消失在-22.4℃左右, 相应流体盐度变化范围为 2.2%~24.5 % NaCleq, 盐度峰值为 12.5%~14.5 % NaCleq。包裹体以均一 至液相为主,均一化温度变化范围为 107.8~ 256.2℃,温度峰值为 150~180℃。估算得热液密度 为 0.96~1.10 g/cm³。

(3)新岭岩体中 I 类包裹体冰点温度值为 -5.2~-25.8℃,包裹体以均一至液相方式为主, 均一化温度变化范围为 128.5~260.3℃,温度峰值 为 180~260℃。估算得热液密度为 0.92~1.06 g/ cm³,平均密度 0.99 g/cm³。其 II 类包裹体以完全 均一至CO₂液相方式为主,少数均一到水溶液相,均

矿床 或岩体	包裹体 类型	冰点消失温度(℃)			均一温度(℃)			盐度(% NaCleq)	
		范围	众值	平均	范围	众值	平均	范围	众值
小佟家堡子	I (64)	-2.33~-12.3	$-3.5 \sim -7.5$	-5.6	110~335	150~190	170	3.9~16.2	6.5~10.5
一林家	∎ (5)				288~327	290~310	307		
尖山	I (40)	-1.2~-18.0	$-6.9 \sim -12.7$	-9.9	108~256	150~180	165	2.2~24.5	12.5~14.5
	I (56)	$-5.2 \sim -25.8$	$-19.5 \sim -25.1$	-22.3	129~291	$180 \sim 260$	214	8.4~23.2	17.4~22.9
新岭岩体	I (19)				254~385	254~300	277	9.7~12.9	
	N (20)				184~303	220~240	230	31.1~38.4	32.5~36.5

表 1 小佟家堡子、林家金矿床及岩体流体包裹体显微测温结果 Table 1 Microthermometric result of fluid inclusions from the gold deposits and pluton

注:括号中数据为测试个数。

图 4 小佟家堡子金矿床及新岭岩体流体包裹体气相成分含量变化图 Fig. 4 Relationship between H₂O and trace components in fluid inclusions of Xiaotongjiabuzi gold deposit and Xinling pluton

一温度变化范围为 254~390℃,温度峰值在 254~ 300℃。升温过程中,大部分 IV 类包裹体气泡首先 消失,并通过子矿物消失而达到完全均一,均一温度 变化范围为 184.0~303.0℃,温度峰值 220~240℃ 区间,依据子矿物消失温度估算热液盐度为 31.1% ~38.4 % NaCleg。

3 流体包裹体成分特征

包裹体成分分析采用 Renishaw System-1000 型激光拉曼光谱仪,514 nm Ar⁺离子激光器,扫描 范围 4500~850 cm⁻¹,狭缝宽度 20 μm,积分时间 150 s,精度 1 cm⁻¹。

激光拉曼光谱分析表明,小佟家堡子、林家金矿 及尖山岩体中流体气相成分以 H₂O 为主,少量的 CO₂、CH₄ 等气体。新岭岩体中流体气相成分以 CO₂、 H₂O 和 CH₄ 为主,少量 N₂、H₂S 等微量气体成分。由 图 4 可以看出,在金矿床中随着 H₂O 含量的增高, CO₂、H₂S、H₂、CO 等微量成分逐渐减少,而新岭岩体 中,随着 H₂O 含量的增高,除 CO₂ 外,其它气体成分 含量略显增高趋势。从流体成分上可以看出小佟家 堡子、林家金矿及尖山岩体与新岭岩体属于两种不 同类型的流体,金矿床与尖山岩体属 NaCl—H₂O 流 体体系,而新岭岩体属 NaCl—H₂O—CO₂(CH₄)流体 体系。

4 成矿流体来源及成矿机制

4.1 成矿流体及成矿物质来源

流体包裹体研究表明,小佟家堡子、林家金矿床 在经历了古元古宙一中元古宙的沉积一变质一变形 作用和后期热液叠加改造过程后,成矿流体类型比 较简单,主要以水溶液包裹体为主。通过对比研究表 明,金矿床成矿流体无论在类型上,还是盐 度、均一温度上都表现出与尖山岩体具有相 似的特性,即从早期高温阶段到晚期低温阶 段,成矿流体盐度具有逐渐降低的趋势(图 5),金矿床成矿流体均一温度为110~ 335℃,盐度3.9%~16.2% NaCleq;尖山岩 体流体均一温度为108~256℃,盐度2.2% ~24.5% NaCleq,成分上以H₂O为主,总体 属于中一低温、低一中等盐度NaCl—H₂O型 流体。成矿流体的这一性质与新岭岩体存在 一定的差异性,新岭岩体中流体以含盐类子 矿三相为特征,流体盐度随温度变化趋势不 是很明显(图 5),盐度为31.1%~38.4%

NaCl_{eq},均一温度 180~300℃,成分上除 H₂O、CO₂ 外,还含有一定量的 CH₄,总体属于中温、高盐度 NaCl-H₂O-CO₂(CH₄)型流体。

岩相学研究表明,尖山岩体为钠质花岗岩,主要 形成于吕梁期,新岭岩体为似斑状花岗岩,主要形成 于印支期。表明区内金矿床成矿流体主要来自区域 沉积一变质期,晚期虽表现出了印支期岩浆热液参 与的迹象,但影响称度较低,只发育少量沿地层微裂 隙交代产出的石英细脉。此外,矿石产出状态也可说 明这一点,矿区金矿体多呈层纹状、条带状顺地层产 出,反映出受区域沉积一变质作用的控制。因此,从 流体角度和矿石基本特征上可以排除许多研究者所 提出的本区金矿床主要为微细浸染型(刘国平等, 1998)、浅成低温热液渗滤型(王文清等,2000)、浊积

岩型(陈江,2000)及岩浆热液(魏民[●])成因的认识。

硫同位素分析表明(孙立民,1997),小佟家堡子 矿床中 δ^{34} S值介于+1.87%~+15.98‰之间,平均 为+8.43‰,变化范围为14.11‰,与青城子铅锌矿 中硫同位素值相似(张秋生等,1984),硫同位素变化 范围较宽,表明成矿溶液硫具有多源性。矿集区大石 桥组地层中硫化物 δ^{34} S为+0.15‰~+13.20‰,平 均值为+6.68‰;印支期新岭岩体 δ^{34} S为+0.5‰~ +7.6‰,平均值为+4.05‰(张秋生等,1984)。金矿 床矿石与赋矿地层中 δ^{34} S值的变化范围基本相同, 表明矿石中硫有地层中硫的大量参与,成矿物质主 要来自地层。

薛春纪等(2003)虽然通过⁴⁰Ar/³⁹Ar法获得小佟 家堡子矿床含金硅化岩 238.78±0.74Ma 的坪年龄 值,但这可能是所采集的样品受到后期岩浆热液蚀 变影响所致。因为含金硅化岩中通常具有较低的 K 含量,这可能对测年结果产生一定的影响。

4.2 成矿机制

古元古代早期,华北古大陆开始裂解,辽东裂谷 拉张下陷,海底火山喷溢活动强烈,伴随酸性一基性 的火山岩沉积。中元古代以后,裂谷回返上隆一收 缩,受其影响,在三家子一方家浅海泻湖盆地边缘形 成一系列同生断裂,沿着这些同沉积断裂构造发生 的海底热水喷流活动在早期沉积的碳酸盐岩建造和 富硼、碳的陆源碎屑一粘土岩建造中形成许多条纹 状、薄层状热水沉积硅化岩(硅质岩)。热水喷流作用 把下部地层中的铅、锌、金、银等元素带人海盆,并与 热水沉积岩及其附近的富硼、陆源碎屑一粘土质沉 积物或碳酸盐岩一起沉积形成初始矿源层和部分贫 矿体(田豫才,1999)。

古元古代末期,华北古大陆广泛发生的吕梁运动(1800Ma),使得华北古大陆再次被拼接为统一的 克拉通,辽东裂谷受到挤压一闭合,导致本区含矿建 造发生角闪岩相一绿片岩相的区域变质一变形作 用,形成了带内由脆性一塑性变形行迹组成的复杂 构造格局。变质一变形作用使得矿集区内温度、压力 增大,分散于沉积物或沉积岩层中的粒间水被大量 排出,并与矿物脱水析出的结晶水混合,生成富 Na⁺、Cl⁻的中等盐度 NaCl—H₂O 流体。这种流体溶 解并萃取原始矿源层中的金、银、铅、锌等元素,不断 汇聚于脆一韧性变形条件下形成的劈理化破碎带之 中,并沿其向上运移,在较浅部位,如大石桥组三段 四层、三段五层及其与盖县组接触部位富集成矿,形 成了小佟家堡子及林家层状金矿体。中生代,区域印 支一燕山期岩浆活动虽然广泛,但岩浆侵入体距离 矿集区较远,并受赋矿地层(变粒岩、云母片岩、页 岩)的影响,岩浆热液蚀变程度较弱,金矿床中仅见 有少量的岩浆热液叠加期水溶液、含 CO₂三相及 CO₂包裹体,不足以对小佟家堡子及林家金矿床早 期成矿作用产生积极影响,不能促使成矿物质再次 迁移、富集。

致谢:笔者在野外工作中期间得到了沈阳地质 矿产研究所马德有所长、邴志波副所长,辽宁有色金 属勘查局 103 队胡铁军高工及野外作业组金海宽高 工、郑吉凯工程师、刘福星工程师等有关同志的大力 帮助;论文撰写期间曾与杨志明博士进行过认真的 讨论,收益匪浅,在此一并表示谢意。

注 释

- ❶ 张启圻. 1996. 青城子矿田隐伏矿床勘查研究.
- 2 魏民. 2001. 青城子矿田金、银矿床基本特征及成因探讨. 见:辽 吉地区地质与成矿研讨会论文集. 137~145.
- ❸ 辽宁地质勘查队 103 队. 1996. 辽宁省风城市青城子矿田小佟家 堡子金银多金属矿床地质详查报告.

参考文献 / References

- 陈江. 2000. 辽宁青城于矿田浊积岩型金银多金属矿床、辽宁地质, 17(4):241~245.
- 陈荣度. 1984. 一个元古代裂谷盆地一辽东裂谷. 辽宁地质,2:125 ~133.
- 刘斌,沈昆.1999. 流体包裹体热力学基础.北京:地质出版社,1~ 290.
- 刘国平,艾永富. 2001. 辽宁青城子铅锌银金矿田控矿构造与找矿 方向. 矿床地质,20(2):147~152.
- 刘国平,艾永富. 1998. 变质岩容矿的微细浸染型金矿床——以辽 宁小佟家堡子金矿床为例. 矿床地质,17(增刊):299~302.
- 芮宗瑶,施林道,方如恒,等. 1994. 华北陆块北缘及邻区有色金属 矿床地质.北京;地质出版社,66~67.
- 孙立民,孙文涛,赵广繁.1997. 青城子矿田小佟家堡子金银矿床地 质特征及成矿物质来源探讨.黄金,18:13~18.
- 田豫才,1999. 辽东小佟家堡子金矿床地质特征及成矿机理探讨. 有色金属矿产与勘查,8(5):246~269.
- 王文清,曲亚军. 2000. 辽东古元古宙金矿地质特征及成矿模式. 辽 宁地质,17(3):161~172.
- 薛春纪,陈毓川,路远发,李华芹. 2003. 辽东青城子矿集区金、银成 矿时代及地质意义. 矿床地质,22(2):177~184.
- 张文淮,陈紫英. 1993. 流体包裹体地质学. 武汉:中国地质大学出版社,1~246.
- 张秋生,1988. 辽东半岛早期地壳与矿床,北京;地质出版社,1~ 574.
- 张秋生,刘连登,朱永正,等. 1984. 中国早前寒武纪地质及成矿作 用. 吉林人民出版社,259~299.
- Roedder E. Fluid inclusions as samples of ore fluids. In: Barnes H L. (Ed), Geochemistry of hydrothermal ore deposits. 2nd edition. Wiley, New York, 1979, 684~737.
- Shepherd T J, RaKin Arl and Alderton D H M. A Practical Guide to Fluid Inclusion Studies. Blackie & Son Limited, 1985, 1~154.

The Characteristics and Mechanism of Ore-forming Fluid of Xiaotongjiabuzi and Linjia Gold Deposits, Qingchengzi Orefield

DAI Junzhi^{1,2)}, WANG Keyong²⁾, YANG Yanchen²⁾ LI Jihong³⁾
1) Institute of Mineral Resources, CAGS, Beijing, 100037
2) College of Earth Science, Jilin University, Jilin, Changchun, 130061
3) China Geological Survey, Beijing, 100011

Abstract

Xiaotongjiabuzi and Linjia gold deposits are of medium—large scale gold deposit in Qingchengzi metallogenic belt. There is a close relationship between gold deposits and silicified-rock of sedimentary— metamorphism stage. Petrography studies show that three types of primary fluid inclusions developed in gold deposits and Jianshan pluton: aqueous inclusions, carbon dioxide and carbon dioxide-bearing three-phase inclusions. The former widely exist in gold deposits and Jianshan pluton and the latter two are less than 5 percent in ore-forming fluid. Comparing with gold deposits and Jianshan pluton, there are many daughter crystal-bearing three-phase inclusions exist in Xinling pluton besides above inclusions. The microthermometric study testified the homogenization temperature of ore-forming ranges from 110 to 335 °C, with salinity vary from 3.9 to 16.2 % NaCl_{sq}. The laser Roman spectroscopic analysis for composition of fluid inclusions show that the components of ore-forming mainly are H₂O, accompany by trace amount of CO₂ and CH₄ et al., which indicates the ore-forming fluid belong to NaCl—H₂O fluid system. These fluid characterizes of gold deposits correspond closely to those of fluid in Jianshan pluton, supporting the ore-forming mainly derived from sedimentary—metamorphism stage.

Key words: Xiaotongjiapuzi and Linjia gold deposits; Fluid inclusion; Ore-forming fluid; Ore-forming Mechanism