基于声发射定位的岩石裂纹动态演化过程研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
应用声发射及其定位技术,在单轴压缩载荷作用下,应用盖格尔定位算法,采用试验方法研究包括含不同预制裂纹的花岗岩岩样破裂失稳过程中其内部微裂纹孕育、萌生、扩展、成核和贯通的三维空间演化模式。试验结果表明,声发射定位能够反映岩石裂纹动态演化过程,声发射事件的产生主要是由于裂纹扩展产生的,并随应力–应变变化表现出不同的特征:在初始加载阶段至初始裂纹出现之前,其声发射活动不很明显;一旦岩样出现初始裂纹,在相应应力点声发射事件明显增多;裂纹稳定扩展至岩石完全破坏之前,声发射总数应变曲线与应力–应变曲线平行;在微裂纹扩展的非稳定阶段至岩石破坏瞬间,声发射活动变得异常活跃,声发射事件变化率最大。在完整岩样声发射事件定位结果中,出现声发射定位事件的空白区,宏观裂纹的贯通恰在声发射事件的空白区之内,借此可以实现对岩石裂纹贯通位置预测;声发射定位结果也是岩样内部应力场演化过程的宏观表现,可直观地反映岩样内部裂纹扩展空间位置、扩展方向以及裂纹扩展的空间曲面形态,这对于深入研究岩石破裂失稳机制是十分有意义的。
Acoustic emission(AE),which is produced by the micro-cracks occurrence or growth,is a ubiquitous phenomenon associated with brittle fracture in many materials.AE technique can be used to monitor the micro-cracks development in the rock sample continuously and in-real-time,which is better than other methods.AE location technique is employed to study rock failure process.It is investigated using granite samples with different precut cracks;and AE sensors are mounted on the surface of the sample.A Geiger location algorithm allows AE event location from first arrival times to be determined by AE sensors,which is applied to study the crack initiation and propagation process,also to analyze the crack spatial evolution mode with stress changing during the total loading process.The experimental results show that AE activity represents different characters with stress-strain changing during the total loading process;the quantity of the AE events is very little from the initial loading to crack initiation;when the initial crack generates,AE events apparently increase;AE events are in quiet period after crack initiation up to the time before crack propagation;AE activity sharply increases from crack stable propagation up to crack unstable propagatione,specially in crack unstable propagation step,AE events reach to the most quantity in the division strain.There is “void space” of AE events during the AE location results;the “void space” of AE events is the position of macroscopic crack breakthrough,which can be used to predict the crack breakthrough position of rock samples.Meanwhile,AE location results are also direct reflection of interior stress field propagation process.AE location results also reflect directly the spatial position,direction and spatial curved face of crack propagation in the rock sample,which is very significant to study the mechanism of rock failure.
引文
[1]SCHEDL A,KRONENBERG A K,TULLIS J.Deformation microstructures of barre granite:an optical,Sem and Tem study[J].Tectonophysics,1986,122(1/2):149–164.
    [2]WU L X,CUI C Y,GENG N G,et al.Remote sensing rock mechanics(RSRM)and associated experimental studies[J].Int.J.Rock Mech.Min.Sci.,2000,37(6):879–888.
    [3]赵永红,王仁.岩石微裂纹发育的扫描电镜即时预测研究[J].岩石力学与工程学报,1992,11(3):284–294.(ZHAO Yonghong,WANG Ren.Real-time observation of microfracturing process in rock during compression test[J].Chinese Journal of Rock Mechanics and Engineering,1992,11(3):284–294.(in Chinese))
    [4]唐春安.岩石声发射规律数值模拟初探[J].岩石力学与工程学报,1997,16(4):368–374.(TANG Chun′an.Numerical simulation of AE in rock failure[J].Chinese Journal of Rock Mechanics and Engineering,1997,16(4):368–374.(in Chinese))
    [5]吴立新.遥感岩石力学及其新近进展与未来发展[J].岩石力学与工程学报,2001,20(2):139–146.(WU Lixin.Remote sensing rock mechanics and its recent achievements and future development[J].Chinese Journal of Rock Mechanics and Engineering,2001,20(2):139–146.(in Chinese))
    [6]WU L X,LIU S J,WU Y H,et al.Changes in infrared radiation with rock deformation[J].Int.J.Rock Mech.and Min.Sci.,2002,39(4):825–831.
    [7]许江,李贺.对单轴应力状态下砂岩微观断裂全过程的试验研究[J].力学与实践,1986,6(4):16–21.(XU Jiang,LI He.Experimental research on microfracture process of sand rock under uniaxial compression[J].Mechanics and Practice,1986,6(4):16–21.(in Chinese))
    [8]凌建明,孙钧.脆性岩石的细观裂纹损伤及其时效特征[J].岩石力学与工程学报,1993,12(4):304–312.(LING Jianming,SUN Jun.On mesocrack damage of brittle rock and its time-dependent characteristics[J].Chinese Journal of Rock Mechanics and Engineering,1993,12(4):304–312.(in Chinese))
    [9]杨更社,谢定义.煤岩体损伤特征的CT检测[J].力学与实践,1996,18(2):19–20.(YANG Gengshe,XIE Dingyi.CT identification of coal and rock damage properties[J].Mechanics and Practice,1996,18(2):19–20.(in Chinese))
    [10]刘冬梅,蔡美峰,周玉斌,等.岩石裂纹扩展过程的动态监测研究[J].岩石力学与工程学报,2006,25(3):467–472.(LIU Dongmei,CAI Meifeng,ZHOU Yubin,et al.Dynamic monitoring on development process of rock[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(3):467–472.(in Chinese))
    [11]唐春安,赵文.岩石破裂全过程分析软件系统RFPA2D[J].岩石力学与工程学报,1997,16(5):507–508.(TANG Chun′an,ZHAO Wen.RFPA2D system for rock failure process analysis[J].Chinese Journal of Rock Mechanics and Engineering,1997,16(5):507–508.(in Chinese))
    [12]TANG C A.Numerical simulation of progressive rock failure and associated seismicity[J].Int.J.Rock Mech.Min.Sci.,1997,34(2):249–261.
    [13]黄明利,唐春安,朱万成.岩石破裂过程的数值模拟研究[J].岩石力学与工程学报,2000,19(4):468–471.(HUANG Mingli,TANG Chun′an,ZHU Wancheng.Numerical simulation of failure process of rock[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(4):468–471.(in Chinese))
    [14]LOCKNER D A.The role of acoustic emission in the study of rock failure[J].Int.J.Rock Mech.Min.Sci.and Geomech.Abstr.,1993,30(7):883–899.
    [15]LOCKNER D A,BYERLEE J D,KUKSENKO V,et al.Quasi-static fault growth and shear fracture energy in granite[J].Nature,1991,350(7):39–42.
    [16]耿荣生.声发射技术发展现状——学会成立20年回顾[J].无损检测,1998,20(6):151–154.(GENG Rongsheng.Recent development of acoustic emission:twenty-year review of Chinese Society for NDT[J].Nondestructive Testing,1998,20(6):151–154.(in Chinese))
    [17]MOGI K.Study on elastic shocks caused by the fracture of heterogeneous material and its relation to earthquake phenomena[J].Bull.of the Earthquake Research Institue,1962,40(6):831–853.
    [18]刘新平.单轴压缩下岩石样的声发射谱分析[J].声学学报,1982,5(8):24–32.(LIU Xinping.AE spectrum analysis of rock sample under uniaxial compression condition[J].Acta Acustica,1982,5(8):24–32.(in Chinese))
    [19]HOLCOMB D J.Using acoustic emissions to determine in-situ stress:problems and promise[J].Geomechanics,ASME,AMD,1983,57:11–21.
    [20]HOLCOMB D J,COSTIN L S.Detecting damage surfaces in brittle materials using acoustic emissions[J].Journal of Applied Mechanics,1986,53:536–544.
    [21]MU Y H,YANG Q,YAO Y X,et al.Monitoring of grinding process with acoustic emission signals[J].Journal of Harbin Institute of Technology,1994,26(2):48–51.
    [22]CHANG S H,LEE C I.Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission[J].Int.J.Rock Mech.Min.Sci.,2004,41(7):1 069–1 086.
    [23]MANSUROV V A.Acoustic emission from failing rock behavior[J].Rock Mechanics and Rock Engineering,1994,27(3):173–182.
    [24]吴刚,赵震洋.不同应力状态下岩石类材料破坏的声发射特性[J].岩土工程学报,1998,20(2):82–85.(WU Gang,ZHAO Zhenyang.Acoustic emission character of rock materials failure during various stress states[J].Chinese Journal of Geotechnical Engineering,1998,20(2):82–85.(in Chinese))
    [25]李庶林,尹贤刚,王泳嘉,等.单轴受压岩石破坏全过程声发射特征研究[J].岩石力学与工程学报,2004,23(15):2 499–2 503.(LI Shulin,YIN Xiangang,WANG Yongjia,et al.Studies on acoustic emission characteristics of uniaxial compressive rock failure[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(15):2 499–2 503.(in Chinese))
    [26]GEIGER L.Probability method for the determination of earthquake epicenters from the arrival time only[J].Bull.St.Louis Unic.,1912,8:60–71.
    [27]TARANTOLA A,VALETTE B.Inverse problems=quest for information[J].J.Geophys.,1982,50:159–170.
    [28]FEDORVO V V.Regression problems with controllable variables subject to error[J].Biometrika,1974,61:49–55.
    [29]SPENCE W.Relative epicenter determination using P-wave arrival time differences[J].Bull.Seism.Soc.Am.,1980,76:171–183.
    [30]NELDER J A,MEAD R.A simplex method for function minimization[J].Computer J.,1965,7:308–313.
    [31]Gibowicz S J,Kijko A.矿山地震学引论[M].修济刚,徐平,杨心平译.北京:地震出版社,1998.(GIBOWICZ S J,KIJKO A.An introduction to mining seismology[M].Translated XIU Jigang,XU Ping,YANG Xinping.Beijing:Earthquake Press,1998.(in Chinese))
    [32]赵兴东,唐春安,李元辉,等.花岗岩破裂全过程的声发射特性研究[J].岩石力学与工程学报,2006,25(增2):3 673–3 678.(ZHAO Xingdong,TANG Chun′an,LI Yuanhui,et al.Study on AE activity characteristics under uniaxial compression loading[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(Supp.2):3 673–3 678.(in Chinese))

版权所有:© 2021 中国地质图书馆 中国地质调查局地学文献中心