厦门地区砂砾状强风化花岗岩强度与变形特征试验
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
目的研究砂砾状强风化花岗岩的特殊工程特征,合理确定砂砾状强风化花岗岩承载力和变形指标的大小.方法通过对厦门地区的砂砾状强风化花岗岩进行现场载荷试验、旁压试验与标准贯入试验的对比研究,探讨了承载力和变形模量与标准贯入试验之间的对应关系,建立了砂砾状强风化花岗岩地基土承载力和变形模量与常规原位测试标准贯入试验击数的定量模型,确定了有关模型的参数.结果砂砾状强风化花岗岩地基承载力特征值宜采用标准贯入试验的实测值与地基承载力特征值的对应关系的相关公式确定,试验结果其承载力特征值fak均大于600 kPa,地基承载力提高20%以上;变形模量在30~50 MPa,而过去提供的变形模量均大于50 MPa,工程设计时需引起重视.结论确定砂砾状强风化花岗岩地基承载力和变形模量的方法是可行的.
In order to study the special engineering geologic behaviors of sandy strong-weathered granite and reasonably determine the values of its bearing capacity and deformation modulus,based on the results of loading test in site,pressuremeter test and standard penetration test(SPT) about sandy strong-weathered granite in Xiamen,the relations among bearing capacity,deformation modulus and standard penetration test were discussed.The quantitative model about the bearing capacity,deformation modulus of sandy strong-weathered granite and the blow counts of standard penetration test were proposed to determine relational parameters.Through analyzing the test results,the bearing capacity value of sandy strong-weathered granite should be determined by the relational equations of the measured values of standard penetration test and the characteristic values of subgrade bearing capacity.The characteristic values of bearing capacity fak were over 600 kPa and increased more than 20 per cent,compared to the last generally provided foundation bearing capacity.The deformation modulus were between 30~50 MPa,but the last provided deformation modulus were larger than 50 MPa,so we should pay attention in the engineering design.The analysis of experiment results showed that it was effective to determine the values of its bearing capacity and deformation modulus by the proposed method.
引文
[1]工程地质手册编委会.工程地质手册[M].北京:中国建筑工业出版社,2007.
    [2]王光辉.深圳市赛格群星广场花岗岩强风化带承载力研究[J].岩土工程界,2003(10):27-30.
    [3]中华人民共和国建设部.JGJ72-2004高层建筑岩土工程勘察规程[S].北京:中国建筑工业出版社,2004.
    [4]中华人民共和国建设部.GB5007-2002建筑地基基础设计规范[S].北京:中国建筑工业出版社,2002.
    [5]廖远群.不同饱和度下花岗岩的强度及变形特性[J].华南地震,1993,3(3):87-93.
    [6]Chang S H,Lee C I,Seokwon Jeon.Measurement ofrock fracture toughness under ModelⅠandⅡandmixed-mode conditions by using disc-type speci-mens[J].Engineering Geology,2002,66(2):79-97.
    [7]王学滨.初始内聚力及摩擦角对岩样全部变形特征的影响[J].沈阳建筑大学学报:自然科学版,2005,21(5):472-477.
    [8]Sun Yazhen,Liu Jiemin,Yu Tianqing.Coupling anal-ysis of fracture mechanics and damage mechanics forfiber-reinforced asphalt concrete pavement[C].Chicago,Illinois:Proceedings of IMECE,2006.
    [9]王来贵,赵娜,初影,等.不同面积载荷作用下的岩石试件破裂数值模拟[J].沈阳建筑大学学报:自然科学版,2007,23(6):918-923.
    [10]Zinkiewicz O C,Cormeau I C.Visco-plasticity andcreep in elastic solids a unified numerical solution ap-proach[J].Int J Num Nbth in Engrg,1974(8):821-845.
    [11]Klepaczko J R,Brara A.An experimental method fordynamic tensile testing of concrete by spalling[J].In-ternational Journal of Impact Engineering,2001(25):387-409.
    [12]Pan Y W,Dong J J.Time-dependent tunnel conver-gence:Formulation of the model[J].Int J Rock MechMin Sci&Geoech Abstr,1991,28(6):469-475.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心