排水循环剪切条件下砂土体变特性试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
利用土工静力-动力液压三轴-扭转多功能剪切仪,针对饱和福建标准砂,在各向均等与三向非均等固结条件下,进行了排水循环扭剪试验.通过试验讨论了初始主应力方向、相对密度和剪应变幅度对排水条件下饱和砂土体积变化特性的影响.研究表明:循环剪应变幅度和相对密度显著地影响饱和砂土体积变化规律,循环剪应变幅度越高,相对密度越大,越易于发生剪胀.在三向非均等固结情况下,饱和砂土在排水循环剪切条件下的体变特性密切地依赖于砂土的初始主应力方向.不同初始主应力方向时应力-应变关系表现出不同的变化模式,体积变化累积规律的具体模式取决于正应力水平与垂直平面上所存在的初始剪应力.
The soil static and dynamic universal triaxial and torsional shear apparatus is employed to perform drained cyclic torsional shear tests of saturated Fujian standard sand under initial conditions of isotropic consolidation or three-directional anisotropic consolidation.The effects of initial orientation of principal stress,relative density and shear strain amplitude on characteristics of volumetric strain induced under drained cyclic shear condition are examined on the basis of comparative tests.It is shown that the characteristics of volumetric change are noticeably affected by shear strain amplitude and relative density.The higher shear strain amplitude and the larger relative density,the heavier the dilatancy of sand subjected to drained cyclic shearing.It is indicated that the feature of volumetric change is closely dependent on the initial orientation of principal stress under initial three-directional anisotropic consolidation condition.The patterns of the stress-strain relation are associated with the initial orientation of principal stress and both variation mode of volumetric strain accumulation and dilatancy or/and contraction behaviour are related to the initial pre-shear stress imposed on the horizontal and vertical planes.
引文
[1]谢定义.土动力学[M].西安:西安交通大学出版社,1988
    [2]汪闻韶.土的动力强度和液化特性[M].北京:中国电力出版社,1997
    [3]REYNOLDS O.On the dilatancy of media composedof rigid particles in contact[J].PhilosophicalMagazine,1885,5(20):469-481
    [4]TAYLOR D W.Fundamentals of Soil Mechanics[M].New York:John Wiley and Sons Inc.,1948
    [5]ROWE P W.The stress-dilatancy relation for staticequilibrium of an assembly of particles in contact[J].Proceedings of the Royal Society of London,1962,269(A):500-527
    [6]GUO P J,STOLLE D F E.The extension of Rowe′sstress-dilatancy model to general stress condition[J].Soils and Foundations,2004,44(4):1-10
    [7]WAN R G,GUO P J.Drained cyclic behavior of sandwith fabric dependence[J].Journal of EngineeringMechanics,ASCE,2001,127(11):1106-1116
    [8]DHAN T B S,TATSUOKA F,SATO Y.Experimental stress-dilatancy relations of sandsubjected to cyclic loading[J].Soils and Foundations,1989,29(1):45-64
    [9]PRADHAN T B S,TATSUOKA F.Onstress-dilatancy equations of sand subjected to cyclicloading[J].Soils and Foundations,1989,29(1):65-81
    [10]SHAMOTO Y,ZHANG J M,GOTO S.Mechanism of large post-liquefaction deformation insaturated sand[J].Soils and Foundations,1997,37(2):71-80
    [11]张建民.砂土的可逆性和不可逆性剪胀规律[J].岩土工程学报,2000,22(1):12-17
    [12]SATO K,YASUHARA K,HIGUCHI T,et al.Effects of principal stress direction on undrainedcyclic shear behavior of dense sand[J].Journal ofGeotechnical Engineering,JSCE,1996,41/Ⅲ-35:199-213
    [13]郭莹,栾茂田,许成顺,等.主应力方向变化对松砂不排水动强度特性的影响[J].岩土工程学报,2003,25(6):666-670
    [14]何杨,栾茂田,许成顺,等.复杂应力条件下松砂振动孔隙水压力与体变特性的试验研究[J].地震工程与工程振动,2005,25(6):127-134
    [15]栾茂田,郭莹,李木国,等.土工静力-动力液压三轴-扭转多功能剪切仪研发及应用[J].大连理工大学学报,2003,43(5):670-675(LUAN Mao-tian,GUO Ying,LI Mu-guo,et al.Development and application of soil static anddynamic universal triaxial and torsional shearapparatus[J].Journal of Dalian University ofTechnology,2003,43(5):670-675)
    [16]李广信,武世锋.土的卸载体缩的试验研究及其机理探讨[J].岩土工程学报,2002,24(1):47-50

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心