煤岩冲击前兆微震频谱演变规律的试验与实证研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
冲击矿压造成煤矿巷道及开采空间的破坏,其主要原因是冲击震源产生的振动波传递并扰动处于极限应力状态的煤岩体而诱发能量的突然释放。微震监测技术通过反映煤岩体变形破裂释放的能量以及频谱特征而实现冲击矿压的监测预报,其前兆信息研究是识别冲击矿压危险程度的关键。利用TDS–6微震采集系统测试三河尖煤矿组合煤岩试样变形破裂直至冲击破坏全过程的微震信号,发现在循环加载的后期,冲击前兆微震信号的低频成分增加,频谱向低频段移动,振幅较低,而试样冲击破坏诱发主震信号的高频成分增多,且振幅达到最大值。现场冲击矿压监测表明,前兆微震信号频谱中低频成分增加,且振幅开始逐渐上升。当冲击矿压发生时,主震信号的振幅达到最大值,频谱相对于前兆信号而言,高频成分明显增多。由此,微震信号的频谱向低频段移动,且振幅逐渐增加可以作为冲击矿压发生的一个前兆信息。这一结论对于利用微震监测系统监测预报冲击矿压具有一定的借鉴意义。
The major reason that roadway or working face in coal mine is destroyed by rockburst is that the rockburst tremor generated by shock wave propagates and disturbs the coal-rock materials in the limit stress state.Microseismic(MS) technology can monitor and forecast rockburst by revealing indirectly energy release in deformation and fracture and frequency-spectrum characters of the coal-rock materials.To distinguish the danger classes of rockburst,the research on precursory information is a key question.By the TDS–6 MS test system,the MS signal of the compound coal-rock samples obtained from Sanhejian coal mine is studied in the processes of deformation,fracture and rockburst.It is found that the low-frequency components in precursory MS signals in the later period of cyclic loading will increase,the frequency-spectrum will move to low frequency band,and the amplitude is lower.But the high-frequency components in mainshock signals induced by rockburst will increase and the amplitude will increase suddenly to the maximum value.By monitoring the rockburst catastrophe on spot,the low frequency components in precursory MS signals will increase,and the amplitude will also begin to increase gradually.When rockburst happens,the amplitude of the mainshock signal suddenly increases to the maximum value,the high-frequency components will obviously increase compared to precursory signals.Based on the results,it can be believed as precursory information of rockburst that the frequency-spectrum of MS signals starts to move towards low frequency and the amplitude will also begin to increase.The conclusion will generate considerable important directive significance for monitoring and forecasting rockburst catastrophe with MS monitoring system in coal mines.
引文
[1]窦林名,何学秋.采矿地球物理学[M].北京:中国科学文化出版社,2002.(DOU Linming,HE Xueqiu.Geophysics of mining[M].Beijing:China Science and Culture Press,2002.(in Chinese))
    [2]姜福兴,杨淑华,成云海,等.煤矿冲击地压的微地震监测研究[J].地球物理学报,2006,49(5):1 511–1 516.(JIANG Fuxing,YANG Shuhua,CHENG Yunhai,et al.A study on microseismic monitoring of rock burst in coal mine[J].Chinese Journal of Geophysics,2006,49(5):1 511–1 516.(in Chinese))
    [3]BLAKE W,LEIGHTON F,DUVALL W I.Microseismic techniques for monitoring the behavior of rock structures[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1975,12(4):69.
    [4]BRADY B,LEIGHTON F.Seismicity anomaly prior to a moderate rock burst:a case study[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1977,14(3):127–132.
    [5]CAI M,KAISER P K,MARTIN C D.Quantification of rock mass damage in underground excavations from microseismic event monitoring[J].International Journal of Rock Mechanics and Mining Sciences,2001,38(8):1 135–1 145.
    [6]SRINIVASAN C,ARORA S K,BENADY S.Precursory monitoring of impending rockbursts in Kolar gold mines from microseismic emissions at deeper levels[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(7):941–948.
    [7]谢和平,彭瑞东,鞠杨.岩石变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3 565–3 570.(XIE Heping,PENG Ruidong,JU Yang.Energy dissipation of rock deformation and fracture[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(21):3 565–3 570.(in Chinese))
    [8]陆菜平,窦林名,吴兴容,等.岩体微震监测的频谱分析与信号识别[J].岩土工程学报,2005,27(7):772–775.(LU Caiping,DOU Linming,WU Xingrong,et al.Frequency spectrum analysis of microseismic monitoring and signal differentiation of rock material[J].Chinese Journal of Geotechnical Engineering,2005,27(7):772–775.(in Chinese))
    [9]SPETZLER H,SONDERGELD C,SOBOLEV G,et al.Seismic and strain studies on large laboratory rock samples being stressed to failure[J].Tectonophysics,1987,144(1–3):55–68.
    [10]OHNAKA M.Acoustic emission during creep of brittle rock[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1983,20(3):121–134.
    [11]OHNAKA M,MOGI K.Frequency characteristics of acoustic emission in rocks under uniaxial compression and their relation to the fracturing process of failure[J].Journal of Geophysical Research,1982,87:3 873–3 884.
    [12]READ M D,AYLING M R,MEREDITH P G,et al.Microcracking during triaxial deformation of porous rocks monitored by changes in rock physical properties,II.pore volumometry and acoustic emission measurements on water-saturated rocks[J].Tectonophysics,1995,245(3/4):223–235.
    [13]刘力强,马胜利,马瑾,等.不同结构岩石标本声发射b值和频谱的时间扫描及其物理意义[J].地震地质,2001,23(4):481–492.(LIU Liqiang,MA Shengli,MA Jin,et al.Temporal scanning of b value and spectrum of AE activity for samples with different textures and their physical implications[J].Seismology and Geology,2001,23(4):481–492.(in Chinese))
    [14]李俊平,余志雄,周创兵,等.水力耦合下岩石的声发射特征试验研究[J].岩石力学与工程学报,2006,25(3):492–498.(LI Junping,YU Zhixiong,ZHOU Chuangbing,et al.Experimental study on acoustic emission characteristics of rock concerning hydromechanical coupling[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(3):492–498.(in Chinese))
    [15]王恩元,何学秋,刘贞堂,等.煤体破裂声发射的频谱特征研究[J].煤炭学报,2004,29(3):289–292.(WANG Enyuan,HE Xueqiu,LIU Zhentang,et al.Study on frequency spectrum characteristics of acoustic emission in coal or rock deformation and fracture[J].Journal of China Coal Society,2004,29(3):289–292.(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心