矩型渡槽槽-水耦合体高阶共振特性研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
建立在小幅晃动假设上的槽水耦合体响应理论解显示,当外加激励为简谐荷载且激振频率为水体奇数阶晃动频率时,槽内水体出现共振现象,响应幅值趋于无穷大。如果此理论解确能代表现实中响应特性,则渡槽减隔震设计中存在槽-水耦合体高阶共振问题。这不但给渡槽减隔震设计增加了难度,也给实际工程带来潜在的风险。因此,通过槽-水耦合体高阶共振特性的CFD仿真分析,对槽-水耦合体高阶共振特性进行概念修正,并得出在渡槽减隔震设计中,几乎不存在槽-水耦合体高阶共振影响,在选择隔震周期时,只需避开一阶水体晃动频率的结论。
Theoretical solution based on the assumption of small amplitude sloshing suggests that the dynamic responses of duct-water coupled components drive to infinite under an excitation of simple harmonic waves of odd frequencies.If this solution reflects the reality,then the higher-order resonance has to be considered in the aqueduct bridge design,which leads to a design difficulty and also bring hidden risks to a practical project.This paper shows the need to modify the conceptions from the theoretical solution of small amplitude sloshing.An analysis on the higher-order resonance of duct-water by using CFD simulation verifies that actually almost no higher-order resonances can occur,and that only the natural sloshing frequency needs be avoided when determine the isolation period in the isolated design of aqueduct bridge.
引文
[1]陈厚群.南水北调工程抗震安全性问题[J].中国水利水电科学研究院学报,2003,1(1),17~21.CHEN Houqun.Seismic safety of the South-to-North Water Transfer Project[J].Journal of China Institute of Water Resources andHydropower Research,2003,1(1),17~21.(in Chinese)
    [2]庄中华,李敏霞,陈厚群.渡槽结构隔震与耗能减振控制机理的研究[J].噪声与振动控制,2002,2:10~12.ZHUANG Zhonghua,LI Minxia,CHEN Houqun.Basic theory on aqueduct bridge vibration control using Isolation and energy dissipationhybrid system[J].Noise and Vibration Control.2002,2:10~12.(in Chinese)
    [3]刘云贺,陈厚群.大型渡槽铅销橡胶支座减震机理的数值模拟[J].水利学报,2003,12:98~103.LIU Yunhe,CHEN Houqun.A seismic effect of lead rubber bearing for large scaled aqueduct[J].Journal of Hydraulic Engineering,2003,12:98~103.(in Chinese)
    [4]居荣初.弹性结构与液体的耦联振动理论[M].北京:地震出版社,1983.JU Rongchu.The coupled vibration theory of elastic structure and fluid[M].Beijing:Earthquake Publisher,1983.(in Chinese)
    [5]Housner G W.Dynamic pressure on accelerated fluid containers[J].Bulletin of the seismological of America,1957,47(1):15~35.
    [6]Housner G W.The dynamic behavior of water tanks[J].Bulletin of the seismological of America,1963,53(2):381~387.
    [7]Okamoto T,Kawahara M.Two-dimension sloshing analysis by Lagrangian finite element method[J].International Journal for NumericalMethods in Fluids,1990,11:453~477.
    [8]Ramaswamy B,Kawahara M.Arbitrary Lagrangian-Eulerian finite element method for unsteady,convetive,incompressible viscous freesurface flow[J].International Journal for Numerical Mehtods in Fluids,1987,7:1053~1075.
    [9]Hakan A,Serdar M.Numerical computation of hydrodynamic loads on walls of a rigid rectangular tank due to large amplitude liquid sloshing[J].Turkish Journal Engeneering Env.Sci.2002,26:429~445.
    [10]NIE Liying,CUI Jiayi,ZHANG Liaojun.The characteristics of dynamic response of water in aqueduct bridge under large amplitude solshing[A].The 14th World Conference on Earthquake Engineering[C].Beijing:2008:6~157.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心