砂土各向异性和不排水剪切特性研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
在不同应力路径下,进行三轴和扭剪不排水剪切试验,揭示砂土力学行为与应力路径和各向异性的关系,并对砂土的细观结构和各向异性进行量化.研究结果表明,砂土的力学特性受材料各向异性和应力各向异性耦合影响.砂土各向异性的量化研究和力学试验结果为后续本构模型发展提供了依据.
The mechanical behavior of granular soil is very complex and strongly influenced by factors such as the density,confining pressure,drainage condition and loading path.An image analysis approach was used to quantify the fabric anisotropy of granular soil.Triaxial tests and torsional shear tests were done on Toyoura sand of different fabrics.The relations between the soil response and the fabric anisotropy were explored.The differences in the undrained stress-strain response among the differently prepared specimens are attributed to fabric anisotropy.
引文
[1]Casagrande A,Carillo N.各向异性材料的剪切破坏[J].波士顿土木工程师学会论文集,1944,31:74-87(英文版).
    [2]Oda M,砂土初始各向异性及其和力学特性的关系[J].土与基础,1972,12(1):17-36(英文版).
    [3]Arthur J R F,Menzies B.砂土的固有各向异性[J].英国岩土工程,1972,22:115-128(英文版).
    [4]杨仲轩.砂土各向异性对力学行为的影响[D].香港:香港科技大学,2005(英文版).
    [5]Ishihara K.地震中的液化和流动破坏[J].英国岩土工程,1993,43:351-415(英文版).
    [6]Vaid Y P,Sivathayalan S.单剪和三轴试验条件下Fra-ser Delata砂的静态和循环液化势研究[J].加拿大岩土工程学报,1996,33:281-289(英文版).
    [7]Riemer M F,Seed R B.临界状态线位置的影响因素[J].美国岩土与环境工程学报,1997,123:281-288(英文版).
    [8]Yoshimine M,Ishihara K.砂土液化时的流动特性[J].土与基础,1998,38(3):189-198(英文版).
    [9]明海燕,李相崧,Dafalias Y F.岩土各向异性对挡土墙抗震性能影响数值分析[J].深圳大学学报理工版,2007,24(3):221-227.
    [10]明海燕,李相崧,Dafalias Y F.砂土内在各向异性的本构模拟[J].深圳大学学报理工版,2007,24(4):331-338.
    [11]Curray J R.二维颗粒朝向数据的分析[J].地质学报,1956,64:117-131(英文版).
    [12]Oda M.颗粒材料力学简介[M].鹿特丹:A ABalkema,1999(英文版).
    [13]Oda M,Nakayama H.考虑土各向异性的屈服函数[J].工程力学学报,ASCE,1989,115:89-104(英文版).
    [14]蔡正银.与状态有关的剪胀理论及其在剪切带形成中的应用[D].香港:香港科技大学,2001(英文版).
    [15]Verdugo R,Ishihara K.砂土的临界状态[J].土与基础,1996,36(2):81-91 2001(英文版).
    [1]Casagrande A,Carillo N.Shear failure of anisotropic mate-rials[J].Proc Boston Soc of Civ Engrs,1944,31:74-87.
    [2]Oda M.Initial fabrics and their relations to mechanicalproperties of granular materials[J].Soils and Founda-tions,1972,12(1):17-36.
    [3]Arthur J R F,Menzies B.Inherent anisotropy in a sand[J].G啨otechnique,1972,22:115-128.
    [4]Yang Z X.Investigation of fabric anisotropic effects ongranular soil behavior[D].Hong Kong:The Hong KongUniversity of Science and Technology,2005.
    [5]Ishihara K.Liquefaction and flow failure during earth-quakes[J].G啨otechnique,1993,43:351-415.
    [6]Vaid Y P,Sivathayalan S.Static and cyclic liquefactionpotential of fraser delata sand in simple shear and triaxialtests[J].Can Geotech J,1996,33:281-289.
    [7]Riemer M F,Seed R B.Factors affecting the apparent po-sition of steady state line[J].J Geotech Geoenviron En-gng,1997,123:281-288.
    [8]Yoshimine M,Ishihara K.Flow potential of sand duringliquefaction[J].Soils and Foundations,1998,38(3):189-198.
    [9]Ming HY,Li X S,Dafalias Y F.Numerical study of im-pact of soil anisotropy on seismic performance of retainingstructure[J].Journal of Shenzhen University Science andEngineering,2007,24(3):221-227(in Chinese).
    [10]Ming HY,Li X S,Dafalias Y F.Constitutive modelingof fabric anisotropy of sand[J].Journal of Shenzhen U-niversity Science and Engineering,2007,24(4):331-338(in Chinese).
    [11]Curray J R.The analysis of two-dimensional orientationdata[J].J of Geology,1956,64:117-131.
    [12]Oda M.Introduction to Mechanics of Granular Materials[M].Rotterdam:A A Balkema,1999.
    [13]Oda M,Nakayama H.A yield function for soils with ani-sotropic fabric[J].Journal of Mechanics of Materials,ASCE,1989,115:89-104.
    [14]Cai ZY.Acomprehensive studyofstate-dependentdilatancyand its application in shear band formation analysis[D].Hong Kong:The Hong Kong University of Science andTechnology,2001.
    [15]Verdugo R,Ishihara K.The steady state of sandy soils[J].Soils and Foundations,1996,36(2):81-91.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心