岩石加载过程声波波速变化规律实验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
通过对花岗岩、片麻岩、大理岩和砂岩进行加载,探寻岩石波速随应力变化的响应特征.实验结果表明:花岗岩和片麻岩在线弹性加载阶段,波速-应力呈线性上升;波速达到峰值之后,波速-应力为二次函数非线性变化,再继续加载则岩样发生破坏.大理岩及砂岩在整个加载过程中波速基本保持恒定.依据成岩类型将波速变化分为两种类型:Ⅰ型,波速线性增加—峰值波速—缓慢下降—突然下降(破坏);Ⅱ型,波速不变—突然下降(破坏).在循环荷载作用下,岩石在线弹性加载阶段,波速呈线性上升;当增加到一定载荷,波速突然下降,岩样发生破坏.以上研究表明,在线弹性加载阶段,波速增加主要是密度变化引起的,裂纹萌生、扩展、贯通直接影响波速随应力的变化规律.
Different rock samples were loaded up to explore the response characteristics of the acoustic wave velocity(AWV) in rock with stress changing.The testing results showed that the relationship between AWV and stress goes up linearly in the linear elastic load phase of granite and gneiss,and the relationship becomes nonlinearly quadratic if AWV comes up to its peak value and,finally,rock failure comes true if loaded further.As to the marble and sandstone,AWV keeps constant basically in the whole loading process.The AWV change in rock could be divided into two types according to the diagenesis of different rock,i.e.,Type I: linear increasing—peak AWV—slow decreasing—abrupt decreasing(failure);Type II: keeping constant—abrupt decreasing(failure).It means that under cycling load AWV goes up linearly in elastic load phase then goes down abruptly if the load is increased to a certain extent and,further,rock failure happens.The reason why the AWV increases during elastic load phase is mainly due to density variation in rock samples.The process from initiation and propagation to breakdown of micro-cracks directly affects the rule of AWV change with stress.
引文
[1]赵明阶,吴德伦.工程岩体的超声波分类及其强度预测[J].岩石力学与工程学报,2000,19(1):89-92.(Zhao Ming-jie,Wu De-lun.The ultrasonic identification ofrock mass classification and rockmass strength prediction[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(1):89-92.)
    [2]朱焕春.某高边坡岩体声波测试与分析[J].岩石力学与工程学报,1999,18(4):378-381.(Zhu Huan-chun.Sonic wave measuring and analysis of highrock slope[J].Chinese Journal of Rock Mechanics andEngineering,1999,18(4):378-381.)
    [3]Darot M,ReuschléT.Acoustic wave velocity and permeabilityevolution during pressure cycles on a thermally cracked granite[J].Int J Rock Mech Min Sci,2000,37(7):1019-1026.
    [4]Hovem J M.Acoustic waves in finely layered media[J].Int JRock Mech Min Sci,1996,33(5):210-212.
    [5]Geerits T W,Kelder O.Acoustic wave propagation throughporous media:theory and experiments[J].OceanographicLiterature Review,1998,45(3):476-479.
    [6]Aggarwal Y P,Sykes L R,Simpson D W,et al.Spatial andtemporal variations in Ts/Tp and in P wave residuals at BlueMountain Lake,New York:application to earthquakeprediction[J].Geophys Res,1975,80:718-732.
    [7]陈,杨咸武,韩彪.变形过程中岩石P波速度场的空间变化[J].地震学报,1990,12(1):54-59.(Chen Yong,Yang Xian-wu,Han Biao.Spatial velocityvariations of P waves during rock deformations[J].ActaSeismologica Sinica,1990,12(1):54-59.)
    [8]李元辉,赵兴东,赵有国,等.不同条件下花岗岩岩样波速的传播规律[J].东北大学学报:自然科学版,2006,27(9):1030-1033.(Li Yuan-hui,Zhao Xing-dong,Zhao You-guo,et al.Propagation law of wave velocity in granite sample underdifferent conditions[J].Journal of Northeastern University:Natural Science,2006,27(9):1030-1033.)
    [9]杨卫.宏观断裂力学[M].北京:国防工业出版社,1995.(Yang Wei.Macroscopic fracture mechanics[M].Beijing:National Defence Industry Press,1995.)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心