钢纤维混凝土动态压缩性能及全曲线模型研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
对钢纤维含量分别为0%、1%、2%、4%、6%的C30和C40混凝土进行了常三轴动态压缩试验,C30混凝土试件围压值为0MPa、6MPa、9MPa、12MPa、18MPa、24MPa,C40混凝土试件围压值为0MPa、8MPa、12MPa、16MPa、24MPa、32MPa;试验过程中采用位移控制模式下的正弦波分级加载。在此基础上,进行了应力-应变全曲线表达式的选择与分析,并对各材料参数与诸因素间的相关性进行了分析。结果表明:1)通过对Ezeldin等提出的钢纤维混凝土静态荷载作用下的应力-应变全曲线公式进行β参数修正,使得该模型可以很好地描述钢纤维混凝土在动态常三轴压缩作用下的应力-应变全曲线关系;2)纤维含量对C40混凝土的动态抗压强度的改善作用比对C30混凝土显著,但受压状态下纤维含量对提高混凝土动态强度总的幅度较小;3)混凝土动态峰值应力对围压大小较敏感,C40混凝土的敏感性对C30混凝土有所下降,峰值应变与诸因素的相关关系基本上与峰值应力相同;4)在动态荷载作用下钢纤维混凝土的割线弹性模量、钢纤维含量与割线模量间的相关性,均表现为C40混凝土比C30混凝土要高;5)围压与纤维含量对混凝土材料的受压状态下的韧度指数ncmax不产生太大影响。
The steel fiber content of 0%, 1%, 2%, 4%, 6% of the C30 and C40 concrete were conducted on the conventional three-axis experiment for a regular three-axis dynamic compression test. The confining pressure values of 0, 6, 9, 12, 18 and 24 MPa were used on the C30 concrete specimens, the confining pressure values of 0, 8, 12, 16, 24 and 32 MPa were used on the C40 concrete specimens; The concrete specimen is loaded in certain sine-wave pressures in axis grade by grade. On this basis, the expression of the stress-strain curve was chosen and analyzed, the correlation of the material parameters and the factors were analyzed. The results show that: 1) the stress-strain curve formula parameters using for the SFRC under static force presented by Ezeldin are modified,the modified model has a good description of the stress-strain curve of the SFRC under the three-axis dynamic compression; 2) fiber content on dynamic role of improving the compressive strength of the C40 concrete show more significant than that of C30 concrete, but the improvement of the fiber content to the dynamic strength of the concrete is not considerable under pressure; 3) the concrete dynamic peak stress shows more sensitive on confining pressure size; comparing with C30, the sensitivity of C40 is slighter; the peak strain relationship among other factors is basically the same as that of the peak stress; 4) under dynamic loading, the performance of C40 is higher than that of C30 on the secant elasticity modulus, the relationship between the secant modulus and the steel fiber content; 5) the confining pressure and fiber content of concrete have not much impact on the index toughness on the state of compression.
引文
[1]Oritz M.A constituteive theory for the inelastic behavior of concrete[J].Mech.of Mat.,1985,4(1):67―93.
    [2]Bichoff P H,Peng S H.Compressive behavior at high strain rates[J].Materials and Structures,1991,24(144):425―450.
    [3]杜成斌,苏擎柱.混凝土材料动力本构模型研究进展[J].世界地震工程,2002,18(2):94―98.Du Chengbin,Su Qingzhu.Progress in study on dynamic constitutive models of concrete material[J].World Information on Earthquake Engineering,2002,18(2):94―98.(in Chinese)
    [4]Harris D W,Mohorovic C E,Dolen T P.Dynamic properties of mass concrete obtained from dam cores[J].ACI Material Journal,2000(97):290―296.
    [5]Brara A,Ccamborde F,Klepaczko R,Mariotte C.Experimental and numerical study of concrete at high strain rates in tension[J].Mechanics of Materials,2001(33):33―45.
    [6]党发宁.岩土破损演化理论(Ⅰ)—破损空间[J].岩土力学,2005,26(4):513―519.Dang Faning.Damage-fracture evolution theory of rock and soil(I):Damage-fracture space[J].Rock and Soil Mechanics,2005,26(4):513―519.(in Chinese)
    [7]党发宁.岩土破损演化(Ⅱ)—物理状态指标与分区破损[J].岩土力学,2005,26(5):673―679.Dang Faning.Damage-fracture evolution theory of rock and soil(Ⅱ):Physical state indexes and divisional damage-fracture theory[J].Rock and Soil Mechanics,2005,26(5):673―679.(in Chinese)
    [8]丁卫华,仵彦卿.基于x射线的岩石内部裂纹宽度测量[J].岩石力学与工程学报,2003,22(9):1421―1425.Ding Weihua,Wu Yanqing.Measurement of crack width rock interior based on x-ray CT[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(9):1421―1425.(in Chinese)
    [9]Lu Y,Xu K.Modeling of dynamic behavior of concrete materials under blast loading[J].International Journal of Solids and Structures,2004,41:131―113.
    [10]胡时胜,王道荣.冲击载荷下混凝土材料的动态本构关系[J].爆炸与冲击,2002,22(3):242―246.Hu Shisheng,Wang Daorong.Dynamic constitutive relation of concrete under impact[J].Explosion and Shock Waves,2002,22(3):242―246.(in Chinese)
    [11]Burlion N,Gatuingt F.Compaction and tensile damage in concrete:constitutive modeling and application to dynamics[J].Computer Methods in Applied Mechanics and Engineering,2000,183(3/4):291―308.
    [12]商霖,宁建国.强冲击载荷下混凝土动态本构关系[J].工程力学,2005,22(2):116―119,78.Shang Lin,Ning Jianguo.Dynamic constitutive relationship of concrete subjected to shock loading[J].Engineering Mechanics,2005,22(2):116―119,78.(in Chinese)
    [13]王哲,林皋.混凝土的单轴率型本构模型[J].大连理工大学学报,2000,40(5):597―601.Wang Zhe,Lin Gao.A uniaxial rate dependent constitutive model for concrete materials[J].Journal of Dalian University of Technology,2000,40(5):597―601.(in Chinese)
    [14]Ezeldin A S,Balaguru P N.Normal and high-strength fiber reinforced concrete under compression[J].Journal of Materials in Civil Engineering,1992,4(4):415―429.
    [15]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.Guo Zhenhai,Shi Xudong.Reinforced concrete theory and analyses[M].Beijing:Tsinghua University Press,2003.(in Chinese)
    [16]过镇海.混凝土强度和变形[M].北京:清华大学出版社,1997.Guo Zhenhai.Concrete strength and deformation[M].Beijing:Tsinghua University Press,1997.(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心