混凝土破裂与渗水过程的红外辐射特征
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
对内含水体的混凝土试样进行单轴压缩加载,利用红外热像仪并辅以声发射仪,观测加载过程中试样的红外辐射与声发射变化特征,研究混凝土破裂与渗水的红外异常前兆。实验结果显示,随着应力的阶段性发展,试样表面的红外辐射呈现早期整体性均匀上升、中期局部高温异常、后期低温异常的主要特征,声发射相应出现早期微量增加、中期均匀增加、后期快速增加的特征。加载中、后期红外热像出现的局部辐射温度"先升后降"现象是混凝土破裂–渗水的重要红外异常前兆,其出现的时间要早于应力和声发射前兆。整个破裂与渗水过程中,高温区域包围低温区域的温度场分布是热像的主要特征。基于实验结果,分析试样红外辐射阶段性变化以及破裂、渗水异常前兆的机制,讨论应力、红外及声发射灾变前兆时间差异性的原因。实验结果对水库大坝以及其他储水混凝土工程破裂与渗水的遥感监测与灾变预警具有重要的意义。
To study the variation features of infrared radiation(IR) and acoustic emission(AE) of concrete during the fracturing and water seepage process,a concrete block is pressurized with embodied water to uniaxially compressive stress.The changes of its IR radiation and AE are measured using an infrared thermal imager and a AE instrument.The experimental results show that IR radiation of the sample′s surface regularly varies with the stress in different stages.The IR radiation shows an overall rise in early term,then partial high temperature in medium term,and partial low temperature in late term.The corresponding AE shows a little increase in the early term,then steadily increase in the medium term,and rapidly increase in the late term.It is revealed that the IR radiation experiences decreasing after early increase is the anomalous precursor of the fracturing and water seepage of concrete.The IR anomalous precursor happens earlier than stress and AE anomalous precursor.The thermal images of the sample also show that the low-temperature areas are surrounded by the high-temperature areas during the fracturing and water seepage process,which is the main feature of radiation temperature field.The mechanism of IR radiation variation in the loading process and the IR anomalous precursor of fracturing and water seepage are analyzed.The time difference between stress precursor,IR radiation precursor and AE precursor is also discussed.The experimental results are useful for the remote sensing monitoring and disaster forecasting on concrete dam and other concrete engineering.
引文
[1]耿乃光,崔承禹,邓明德,等.岩石破裂实验中的遥感观测与遥感岩石力学的开端[J].地震学报,1992,14(增):645–652.(GENG Naiguang,CUI Chengyu,DENG Mingde,et al.Remote sensing detection on rock fracturing experiment and the beginning of remote sensing rock mechanics[J].Acta Seismologic Sinica,1992,14(Supp.):645–652.(in Chinese))
    [2]崔承禹,邓明德,耿乃光.在不同压力下岩石光谱辐射特征研究[J].科学通报,1993,38(6):538–541.(CUI Chengyu,DENG Mingde,GENG Naiguang.Rock spectral radiation signatures under different pressures[J].Bulletin of Science and Technology,1993,38(6):538–541.(in Chinese))
    [3]邓明德,崔承禹,耿乃光,等.岩石的红外波段辐射特性研究[J].红外与毫米波学报,1994,13(6):425–430.(DENG Mingde,CUI Chengyu,GENG Naiguang,et al.Study on the infrared waveband radiation characteristics of rock[J].Journal of Infrared Millimeter Waves,1994,13(6):425–430.(in Chinese))
    [4]耿乃光,于萍,邓明德,等.热红外震兆成因的模拟实验研究[J].地震,1998,18(1):83–88.(GENG Naiguang,YU Ping,DENG Mingde,et al.The simulated experimental studies on cause of thermal infrared precursor of earthquake[J].Earthquake,1998,18(1):83–88.(in Chinese))
    [5]刘善军,吴立新,王川婴,等.遥感–岩石力学(VIII)——论岩石破裂的热红外前兆[J].岩石力学与工程学报,2004,23(10):1 621–1 627.(LIU Shanjun,WU Lixin,WANG Chuanying,et al.Remote sensing-rock mechanics(VIII)—TIR omens of rock fracturing[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(10):1 621–1 627.(in Chinese))
    [6]WU L X,LIU S J,WU Y H,et al.Precursors for rock fracturing and failure—part I:IRR image abnormalities[J].International Journal of Rock Mechanics and Mining Sciences,2006,43(3):473–482.
    [7]WU L X,LIU S J,WU Y H,et al.Precursors for rock fracturing and failure—part II:IRRT-curve abnormalities[J].International Journal of Rock Mechanics and Mining Sciences,2006,43(3):483–493.
    [8]WU L X,WANG J Z.Infrared radiation features of coal and rocks under loading[J].International Journal of Rock Mechanics and Mining Sciences,1998,35(7):969–976.
    [9]WU L X,CUI C Y,GENG N G,et al.Remote sensing rock mechanics(RSRM)and associated experimental studies[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(6):879–888.
    [10]LUONG M P.Infrared observation of failure processes in plain concrete[C]//Durability of Building Materials and Component,4 DBMC.Singapore:Pergamon,1987:870–878.
    [11]LUONG M P.Infrared thermovision of damage processes in concrete and rock[J].Engineering Fracture Mechanics,1990,35(1/3):127–135.
    [12]邓明德,樊正芳,耿乃光,等.混凝土的微波辐射和红外辐射随应力变化的实验研究[J].岩石力学与工程学报,1997,16(6):577–583.(DENG Mingde,FAN Zhengfang,GENG Naiguang,et al.Testing study of the variation of microwave and infrared radiation in concrete with stress[J].Chinese Journal of Rock Mechanics and Engineering,1997,16(6):577–583.(in Chinese))
    [13]邓明德,钱家栋,尹京苑,等.红外遥感用于大型混凝土工程稳定性监测和失稳预测研究[J].岩石力学与工程学报,2001,20(2):147–150.(DENG Mingde,QIAN Jiadong,YIN Jingyuan,et al.Research on the application of infrared remote sensing in the stability monitoring and unstability prediction of large concrete engineering[J].Chinese Journal of Rock Mechanics and Engineering,2001,20(2):147–150.(in Chinese))
    [14]ABDEL-QADER I,YOHALI S,ABUDAYYEH O,et al.Segmentation of thermal images for non-destructive evaluation of bridge decks[J].NDT and E International,2008,41(5):395–405.
    [15]BREYSSE D,KLYSZ G X,DéROBERT C,et al.How to combine several non-destructive techniques for a better assessment of concrete structures[J].Cement and Concrete Research,2008,38(6):783–793.
    [16]MAIERHOFER C,ARNDT R,R?LLIG M.Influence of concrete properties on the detection of voids with impulse-thermography[J].Infrared Physics and Technology,2007,49(3):213–217.
    [17]赵为民,赵鸿,赵鸣.红外热像技术在检测建筑物渗漏中的应用[J].住宅科技,2004,(5):38–40.(ZHAO Weimin,ZHAO Hong,ZHAO Ming.Application of infrared thermal image technology to building leakage detection[J].Housing Science,2004,(5):38–40.(in Chinese))
    [18]THOMSON W.On the dynamical theory of heat[J].Transactions of the Royal Society of Edinburgh,1853,20:83–261.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心