饱和松砂的双向耦合剪切特性试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
为了模拟海床及海洋建筑物遭受波浪荷载时所引起的循环应力,进行了一系列均等固结条件下的应力控制式轴向-扭转双向耦合循环剪切试验。试验时在竖向和扭转向同时施加动应力,使加载路径在正应力偏差(σz-σθ)/2与剪应力τzθ应力空间内为椭圆。分别控制竖向和扭转向循环荷载的大小,以此来探讨双向耦合剪切试验中竖向应力与剪应力幅值的变化对饱和松砂变形特性的影响。试验结果显示,所有的竖向应变均以拉伸向为主。对于椭圆应力路径所包围的椭圆面积相同的一组试验,当竖向荷载分量与扭转向荷载分量之比小于某一临界值时,竖向应变完全表现为单拉伸方向的变形,大于临界值时则呈现出拉伸向更为显著的双向循环累积特性破坏。剪应变虽都表现为双向循环累积,但是两个荷载分量的比值不同,应力应变关系的滞回圈曲线形状不同。而椭圆面积的大小对土样的变形特性几乎没有影响。
To simulate the continuous rotation of principal stress axes,a set of stress controlled bi-directional cyclic loading tests were conducted.Tests were performed with two cyclic stress components involving the horizontal shear stress(torsional shear stress) and the vertical shear stress(stress difference between vertical normal stress and horizontal normal stress) to provide an approximate presentation of wave or seismic loading conditions.The stress path shown in the orthogonal coordinates of stress difference and shear stress had an elliptical shape.The ratio of the shear amplitude between the longer axis and shorter axis and the area enclosed by elliptical rotational loading path were controlled in a planned way.Test results showed that the stress-strain behavior was significantly affected by the ratio of amplitude of the two shear stress components.But it was nearly independent on the area enclosed by elliptical rotational loading path.The deformation behaviors were classified as two different types based on the ratio value.
引文
[1]ISHIBASHI Isao,KAWAMURA Makoto,BHATIA Shobha K.Torsional simple shear apparatus for drained and undrained cyclic testing[C]//Advances in the Art of Testing Soils Under Cyclic Conditions,Detroit,MI,Engl,1985:51–73.
    [2]MADSEN O S.Wave-induced pore-pressure and effective stresses in a porous bed[J].Geotechnique,1978,28(4):435–440.
    [3]YAMAMOTO T,KONING H L,SPELLMEIGHER H.On the response of a poro-elastic bed to water waves[J].Journal of Fluid Mechanics,1978,78:193–206.
    [4]钱寿易,楼志刚,杜金声.海洋波浪作用下土动力特性的研究现状和发展[J].岩土工程学报,1982,4(1):16–23.(QIAN Shou-yi,LOU Zhi-gang,DU Jin-sheng.State-of-the-art of dynamic characteristics of soil under ocean wave loading[J].Chinese Journal of Geotechnical Engineering,1982,4(1):16–23.(in Chinese))
    [5]ISHIHARA K,TOWHATA I.Sand response to cyclic rotation of principal stress directions as induced by wave loads[J].Soils and Foundations,1983,23(4):11–26.
    [6]许成顺.复杂应力条件下饱和松砂剪切特性及本构模型的试验验证[D].大连:大连理工大学,2006.(XU Cheng-shun.Experimental study on behavior of saturated loose sands under complex shear loading and constitutive model[D].Dalian:Dalian University of Technology,2006.(in Chinese)
    [7]何杨.复杂应力条件下饱和砂土孔隙水压力及体变特性研究[D].大连:大连理工大学,2007.(HE Yang.Experimental study on pore water pressure and volumetric strain characteristics of saturated sands under complex stress condition[D].Dalian:Dalian University of Technology,2007.(in Chinese))
    [8]林淋.竖向地震动特征分析[D].北京:中国地震局工程力学研究所,2005.(LIN Lin.Characteristics analysis of vertical ground motion[D].Beijing:China Seismological Bureau,2005.(in Chinese))
    [9]周正华,周雍年,卢涛,杨程.竖向地震动特征研究[J].地震工程与工程振动,2003,23(3):25–29.(ZHOU Zheng-hua,ZHOU Yong-nian,LU Tao,YANG Cheng.Study on characteristics of vertical ground motion[J].Chinese Journal of Earthquake Engineering and Engineering Vibration,2003,23(3):25–29.(in Chinese))
    [10]SEED H B,PYKE R M,MARTIN G R.Effect of multi-directional shaking on liquefaction of sands[R].Berkeley:University of California,1975.
    [11]BOULANGER R.W.,SEED R.B.Liquefaction of sand under bi-directional monotonic and cyclic loading[J].Journal of Geotechnical Engineering,ASCE,1995,121(12):870–878.
    [12]沈瑞福,王洪瑾,周克骥,周景星.动主应力旋转下砂土孔隙水压力发展及海床稳定性判断[J].岩土工程学报,1994,16(3):70–78.(SHEN Rui-fu,WANG Hong-jin,ZHOU Ke-ji,ZHOU Jing-xing.Building-up of pore water pressure under cyclic rotation of principal stress and evaluation of stability of seabed deposit[J].Chinese Journal of Geotechnical Engineering,1994,16(3):70–78.(in Chinese))
    [13]姚仰平.真三轴应力条件下砂土的非线性动力本构关系的研究[D].西安:西安理工大学,1995.(YAO Yang-ping.Nonlinear dynamic constitutive relation of sand under real triaxial stress condition[D].Xi′an:Xi′an University of Technology,1995.(in chinese))
    [14]郭莹.复杂应力条件下饱和松砂的不排水动力特性试验研究[D].大连:大连理工大学,2003.(GUO Ying.Experimental studies on undrained cyclic behavior of loose sands under complex stress conditions considering static and cyclic coupling effect[D].Dalian:Dalian University of Technology,2003.(in Chinese))
    [15]BOULANGER R W,CHAN C K,SEED H B,SEED R B.A low-compliance bi-directional cyclic simple shear apparatus[J].Geotech Testing J,1993,16(1):36–45.
    [16]栾茂田,郭莹,李木国,王静,等.土工静力–动力液压三轴-扭转多功能剪切仪研发及应用[J].大连理工大学学报,2003,43(5):670–675.(LUAN Mao-tian,GUO Ying,LI Mu-guo,WANG Jing,et al.Development and application of soil static and dynamic universal triaxial and torsional shear apparatus[J].Chinese Journal of Dalian University of Technology,2003,43(5):670–675.(in chinese))
    [17]SEED H B,LEE K L.Liquefaction of saturated sands during cyclic loading[J].Journal of the Soil Mechanics and Foundation Engineering Division,ASCE,1966,92(SM6):105–134.
    [18]栾茂田,金丹,许成顺,张其一,张振东.双向耦合剪切条件下饱和松砂的液化特性试验研究[J].岩土工程学报,2008,30(6):790–794.(LUAN Mao-tian,JIN Dan,XU Cheng-shun,ZHANG Qi-yi,ZHANG Zhen-dong.Liquefaction of sand under bi-directional cyclic loading[J].Chinese Journal of Geotechnical Engineering,2008,30(6):790–794.(in Chinese))

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心