基于有限元动网格技术的磁流变阻尼器瞬态阻尼力的数值计算
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
相对于参数模型和非参数模型,磁流变阻尼器的物理模型不需要通过实验数据进行参数识别,能够直接从物理实质上预测阻尼器的静态、动态性能,因而一直被用于磁流变阻尼器的设计和分析。为了简化问题,以往的物理模型往往都忽略了液体的惯性力。该文给出了一种简单、高效的建立可考虑液体惯性力的磁流变阻尼器瞬态有限元模型的方法。该方法的要点是:采用动网格技术来描述屈服前区厚度的发展,仅对屈服后区建立有限元模型,而把质量守恒方程和屈服前区的动力学方程作为模型的约束条件。该方法避开了在建立阻尼器瞬态有限元模型时,由粘度突变、屈服点位置依赖于阻尼力等带来的困难。与准静态模型的结果比较表明,该方法正确。结果还表明,磁场的响应是影响磁流变阻尼器瞬态阻尼力的关键,惯性力的影响很小。
Compared with parametric and nonparametric models,physical models don't require parameters iden-tification and are preferred in design and analysis of MR dampers for its direct predicting of dampers' static and dynamic performances.However,the inertial force of MR fluid(MRF) is often neglected for simplicity in previous physical models.This paper considers the inertia of MRF and proposes a novel method to set up a transient finite element model for a MR damper by using the moving mesh in pre-yield zone flexibly.Consequently,the finite elements model is built for post-yield zone only,and both the mass conservation in dampers' gap and the kinetic equation of pre-yield zone are implemented as the model's constraints.In this way,difficulties arsing from the dis-continuities of viscosities and the yield point's dependence on pressure are avoided in building a transient finite ele-ment model for a MR damper.An example of calculating transient force of a MR damper is given at the end of this paper.Agreements between state values of the transient force and results of a well-known quasi-static model validate the proposed method.The results also show that magnetic field response is the key factor affecting the transient damping force,while the effect of the inertia of MRF is negligibly small.
引文
[1]Choi Y T,Wereley N M,Jeon Y S.Semi-active vibration isolation using magnetorheological isolators[C].Proceedings of SPIE,2002,4697:284―291.
    [2]周强,瞿伟廉.磁流变阻尼器的两种力学模型和试验验证[J].地震工程与工程振动,2002,22(4):144―150.Zhou Qiang,Qu Weilian.Two mechanic models for magnetorheological damper and corresponding test veri-fication[J].Earthquake Engineering and Engineering Vibration,2002,22(4):144―150.(in Chinese)
    [3]汪建晓,孟光.磁流变液阻尼器用于振动控制的理论及试验研究[J].振动与冲击,2001,20(2):39―46.Wang Jianxiao,Meng Guang.Theoretical and experi-mental study on the vibration control by mag-neto-rheological fluid dampers[J].Journal of Vibration and Shock,2001,20(2):39―46.(in Chinese)
    [4]Wereley N M,Pang Li,Kamath G M.Idealized hystere-sis modeling of electrorheological dampers[J].Journal of Intelligent Material Systems and Structures,1998,9(8):642―649.
    [5]Kamath G M,Wereley N M.Nonlinear viscoelastic-plastic mechanism-based model of an magnetorheologi-cal damper[J].Journal of Guidance,Control and Dy-namics,1997,6:1125―1132.
    [6]Spencer B F,Dyke S J,Sain M K,Carlson J D.Phe-nomenologial model for magnetorheological dampers[J].Journal of Engineering Mechanics,1997,123(3):230―238.
    [7]Fu Y,Dyke S J,Caicedo J M,Carlson J D.Experimental verification of multi-input seismic control strategies for smart dampers[J].Journal of Engineering Mechanics,2001,127(11):1152―1164.
    [8]Yoshida Osamu,Dyke S J,Giacosa L M,Truman K Z.Experimental verification of torsional response control of asymmetric buildings using MR dampers[J].Earthquake Engineering&Structural Dynamics,2003,32(13):2085―2105.
    [9]徐赵东,李爱群,程文瀼,叶继红.磁流变阻尼器带质量元素的温度唯象模型[J].工程力学,2005,22(2):144―148.Xu Zhaodong,Li Aiqun,Chen Wenrang,Ye Jihong.A temperature phenomenological model with mass element of magnetorheological damper[J].Engineering Mechan-ics,2005,22(2):144―148.(in Chinese)
    [10]Choi S B,Lee S K,Park Y P.A hysteresis model for field-dependent damping force of a magnetorheological damper[J].Journal of Sound and Vibration,2001,245(2):375―383.
    [11]Wang E R,Ma X Q,Rakheja S,Su C Y.Modeling hys-teretic characteristics of an MR-fluid damper[C].Pro-ceedings of the Institution of Mechanical Engineers.Part D:Journal of Automobile Engineering,2003,217:537―550.
    [12]涂建维,瞿伟廉,邹承明.MR智能阻尼器试验研究及径向基网络模型[J].武汉理工大学学报,2003,25(1):43―45.Tu Jianwei,Qu Weilian,Zou Chengming.Test of MR damper and RBF network model[J].Journal of Wuhan University of Technology,2003,25(1):43―45.(in Chi-nese)
    [13]夏品奇.基于系统识别理论的磁流变阻尼器模型[J].工程力学,2003,20(3):115―119.Xia Pinqi.Model of magnetorheological damper based on system identification[J].Engineering Mechanics,2003,20(3):115―119.(in Chinese)[14]Sims N D,Holmes N J,Stanway R.A unified modelling and model updating procedure for electrorheological and magnetorheological vibration dampers[J].Smart Materials and Structures,2004,13(1):100―121.
    [15]Yang G,Spencer B F,Carlson J D,Sain M K,Large-scale MR fluid dampers:Modeling and dynamic performance considerations[J].Engineering Structures,2002,24(3):309―323.
    [16]Chooi W W,Oyadiji S O.Design,modelling and testing of magnetorheological(MR)dampers using analytical flow solutions[J].Computers and Structures,2007,86:473―482.
    [17]Wereley N M,Lindler J,Rosenfeld N,Choi Y T.Biviscous damping behavior in electrorheological shock absorbers[J].Smart Materials and Structures,2004,13:743―752.
    [18]Hong S R,John S,Wereley N M.A unifying perspective on the quasi-steady analysis of magnetorheological dampers[J].Journal of Intelligent Material Systems and Structures,2007,19(8):1―18.
    [19]Wang X J,Gordaninejad F.Flow analysis and modeling of field-controllable,electro-and magneto-rheological fluid dampers[J].Journal of Applied Mechanics,2007,74:13―22.
    [20]任建亭,邓长华,姜节胜.磁流变阻尼器瞬态响应性能的研究[J].功能材料,2006,37(5):729―732.Ren Jianting,Deng Changhua,Jiang Jiesheng.Behavior of transient response of MR damper[J].Journal of Functional Materials,2006,37(5):729―732.(in Chinese)
    [21]Choi Y T,Wereley N M.Assessment of time response characteristics of electrorheological and magnetorheological dampers[C].Proceedings of SPIE,2001,4331:92―102.
    [22]邹明松.磁流变阻尼器流体力学分析及动力学仿真[D].南京:南京理工大学,2007.Zou Mingsong.Flow analysis and dynamic simulation of MR dampers[D].Nanjing:Nanjing University of Science and Technology,2007.(in Chinese)
    [23]Wilkinson W L.Non-newtonian fluids[M].Oxford:Pergamon Press,1960.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心