格栅加筋挡土墙加载速率相关的变形强度特性分析及有限元模拟
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
根据土工格栅加筋挡土墙的模型试验,分析研究了加筋挡土墙在加载速率变化条件下的变形和强度特征。试验中通过墙背填土顶面的条形基础在垂直方向施加荷载,加载过程中基础沉降速率不断发生变化,期间还包含蠕变加载和循环加载。试验发现土工格栅加筋挡土墙存在非常显著的速率相关的行为特性,即沉降速率发生变化时,基底压力–沉降曲线也发生相应的突变。这是填土材料(砂土)和加筋材料(土工格栅)本身黏性及其相互作用的综合反映。应用基于动态松弛法的非线性有限元求解技术对上述模型试验进行具体的有限元数值计算,其中砂土和土工格栅均采用统一的非线性三要素弹黏塑性本构模型进行模拟。计算与分析结果表明,综合考虑砂土和土工格栅的黏性特性的有限元计算方法能很好地模拟土工格栅加筋挡土墙在加载速率变化条件下的变形强度特性。
The deformation and strength characteristics of geogrid-reinforced soil retaining wall are investigated based on the results from physical model tests performed under change of loading rate.The model is vertically loaded with a rigid strip footing placed on the crest of the backfill.The vertical settlement rate of the footing is changed step by step several times and a set of creep loading and cyclic loading stages are performed during change of loading rate.The obvious rate-dependent behaviors of geogrid-reinforced soil retaining wall are observed.Namely,on a step-change in the loading rate,the footing pressure-settlement relation is changed correspondingly.It is due to the viscous properties of the backfill(sand) and the reinforcement(geogrid) and the interactions between them.On the basis of dynamic relaxation method,the nonlinear finite element method(FEM) analysis technique is developed to simulate the above physical model tests.In the FEM analyses,the unified three-component elasto-viscoplastic constitutive model is used to describe both sand and geogrid.It is shown that the aforementioned FEM can well simulate the deformation and strength behaviors of geogrid-reinforced soil retaining wall under change of loading rate.
引文
[1]张孟喜,孙钧.土工合成材料加筋土应变软化特性及弹塑性分析[J].土木工程学报,2000,33(3):105-107.(ZHANG Meng-xi,SUN Jun.Strain softening behavior and an elastic-plastic analysis of reinforced earth with geosynthetics[J].China Civil Engineering Journal,2000,33(3):105-107.(in Chinese))
    [2]KARPURAPU R,BATHURST R J.Behaviour of geosynthetic reinforced soil retaining walls using the finite element method[J].Computers and Geotechnics,1995,17(3):279-299.
    [3]YOO C,KIM S B.Performance of a two-tier geosynthetic reinforced segmental retaining wall under a surcharge load:full-scale load test and 3D finite element analysis[J].Geotextiles and Geomembranes,2008,26(6):460-472.
    [4]LING H I,LIU Hua-bei.Deformation analysis of reinforced soil retaining walls-simplistic versus sophisticated finite element analyses[J].Acta Geotechnica,2009,4(3):203-213.
    [5]吕文良,闫澍旺,刘润.弹塑性有限元在加筋土挡墙中的应用[J].天津大学学报(自然科学与工程技术版),2002,35(5):596-600.(LV Wen-liang,YAN Shu-wang,LIU Run.Application of finite element method in reinforced soil retaining wall[J].Journal of Tianjin University(Science and Technology),2002,35(5):596-600.(in Chinese))
    [6]刘华北.考虑蠕变、地震效应的土工格栅砂性土加筋挡墙弹塑性有限元分析[J].岩土工程学报,2007,29(6):917-921.(LIU Hua-bei.Elasto-plastic finite element analysis of geogrid-reinforced sandy soil retaining walls considering effect of creep and earthquake[J].Chinese Journal of Geotechnical Engineering,2007,29(6):917-921.(in Chinese))
    [7]LIU Hua-bei,WON M S.Long-term reinforcement load of geosynthetic-reinforced soil retaining walls[J].Journal of Geotechnical and Geoenvironmental Engineering,2009,135(7):875-889.
    [8]HELWANY M B,WU J T H.A numerical model for analyzing long-term performance of geosynthetic-reinforced soil structures[J].Geosynthetics International,1995,2(2):429-453.
    [9]肖成志,栾茂田,杨庆,等.加筋挡土墙长期工作性能的黏弹塑性有限元分析[J].岩石力学与工程学报,2006,25(10):1990-1996.(XIAO Cheng-zhi,LUAN Mao-tian,YANG Qing,et al.Numerical analysis of long-term performance of reinforced earth retaining walls by FEM based on viscoelasto-plasticity[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(10):1990-1996.(in Chinese))
    [10]LIU Hua-bei,WANG Xiang-yu,SONG Er-xiang.Long-term behavior of GRS retaining walls with marginal backfill soils[J].Geotextiles and Geomembranes,2009,27(4):295-307.
    [11]李建中,彭芳乐,龙冈文夫.黏土的黏塑性特性试验与三要素本构模型[J].岩土力学,2005,26(6):915-919.(LI Jian-zhong,PENG Fang-le,TATSUOKA F.Viscoplastic properties of clay and constitutive model[J].Rock and Soil Mechanics,2005,26(6):915-919.(in Chinese))
    [12]LADE P V,LIGGIO JR C D,NAM J.Strain rate,creep,and stress drop-creep experiments on crushed coral sand[J].Journal of Geotechnical and Geoenvironmental Engineering,2009,135(7):941-953.
    [13]SHINODA M,BATHURST R J.Lateral and axial deformation of PP,HDPE and PET geogrids under tensile load[J].Geotextiles and Geomembranes,2004,22(4):205-222.
    [14]KONGKITKUL W,HIRAKAWA D,TATSUOKA F.Viscous behaviour of geogrids;experiment and simulation[J].Soils and Foundations,2007,47(2):265-283.
    [15]彭芳乐,李福林,KONGKITKUL W,等.任意加载条件下土工合成材料的弹黏塑性及本构模型[J].工程力学,2009,26(8):50-58.(PENG Fang-le,LI Fu-lin,KONGKITKUL W,et al.Elasto-viscoplastic behavior and constitutive modeling of geosynthetic reinforcements under arbitrary loading[J].Engineering Mechanics,2009,26(8):50-58.(in Chinese))
    [16]PENG Fang-le,KOTAKE N,TATSUOKA F,et al.Plane strain compression behaviour of geogrid-reinforced sand and its numerical analysis[J].Soils and Foundations,2000,40(3):55-74.
    [17]TATSUOKA F,ISHIHARA M,DI BENEDETTO H,et al.Time-dependent shear deformation characteristics of geomaterials and their simulation[J].Soils and Foundations,2002,42(2):103-129.
    [18]彭芳乐,李福林,李建中,等.加载速率变化条件下砂土的黏塑特性及本构模型[J].岩石力学与工程学报,2008,27(8):1576-1585.(PENG Fang-le,LI Fu-lin,LI Jian-zhong,et al.Viscoplastic behaviors and constitutive modeling of sands under change of loading rates[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(8):1576-1585.(in Chinese))
    [19]彭芳乐,李福林,白晓宇,等.考虑应力路径和加载速率效应砂土的弹黏塑性本构模型[J].岩石力学与工程学报,2009,28(5):929-938.(PENG Fang-le,LI Fu-lin,BAI Xiao-yu,et al.Elasto-viscoplastic constitutive model of sandy soil considering stress path and loading rate[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(5):929-938.(in Chinese))
    [20]PENG Fang-le,SIDDIQUEE M S A,TATSUOKA F,et al.Strain energy-based elasto-viscoplastic constitutive modelling of sand for numerical simulation[J].Soils and Foundations,2009,49(4):611-630.
    [21]HOQUE E,TATSUOKA F.Anisotropy in elastic deformation of granular materials[J].Soils and Foundations,1998,38(1):163-179.
    [22]TANAKA T,KAWAMOTO O.Three-dimensional finite element collapse analysis for foundations and slopes using dynamic relaxation[C]//Proc of the 6th Int Conf on Numerical Methods in Geomechanics,Rotterdam:A A Balkema,1988:1213-1218.
    [23]WANG X,WANG L B,XU L M.Formulation of the return mapping algorithm for elastoplastic soil models[J].Computers and Geotechnics,2004,31(4):315-338.
    [24]ZIENKIEWICZ O C,TAYLOR R L,TOO J M.Reduced integration technique in general analysis of plates and shells[J].International Journal for Numerical Methods in Engineering,1971,3(2):275-290.
    [25]FLANAGAN D P,BELYTSCHKO T.A uniform strain hexahedron and quadrilateral with orthogonal hourglass control[J].International Journal for Numerical Methods in Engineering,1981,17(5):679-706.
    [26]OKOCHI Y,TATSUOKA F.Some factors affecting K0-values of sand measured in triaxial cell[J].Soils and Foundations,1984,24(3):52-68.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心