细粒含量对饱和砂土动弹性模量与阻尼比的影响研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
利用GDS循环三轴试验系统,进行一系列不同细粒含量砂土的不排水动三轴试验,研究细粒含量对饱和砂土动弹性模量与阻尼比的影响。试验结果表明,砂土的动弹性模量随细粒含量的增加而减小,但当超过细粒含量的临界值30%后,变化趋势则相反;阻尼比随着细粒含量的增加呈现先增大后减小的趋势,其细粒含量的临界值也为30%。当细粒含量小于30%时,砂土的动力特性主要由粗粒决定,粗粒间形成的骨架孔隙比随细粒含量的增加而增大,相同应变水平下抵抗变形的能力随之减弱,从而使动弹性模量减小。同时,土颗粒间接触点的减少使应力波在土中传播速度变慢,使得土体对动荷载反应的滞后性增强,阻尼比随之增加;当细粒含量大于30%后,砂土的动力特性主要由细粒决定,细粒间孔隙比随着细粒含量的增加而减小,从而使砂土的动弹性模量与阻尼比呈现出相反的变化趋势。
With the GDS dynamic triaxial system,undrained dynamic triaxial tests on the saturated sand of different fines contents were performed;and effects of fines content on the dynamic elastic modulus and damping ratio were analyzed.Results show that the dynamic elastic modulus of sand decreases with increasing of fines content;but the trend is reversed beyond the critical value of fines content of 30%.The damping ratio of sand firstly increases and then decreases with increasing fines content at the same critical value of fines content of 30%.When fines content is less than 30%,the dynamic characteristics of sand is determined mainly by the coarse grains;the skeleton void ratio between coarse grains increases with the increase of fines content;and the ability to resist deformation under the same strain level weakens so that the elastic modulus decreases.Meanwhile,the stress wave propagation speed slows down because of the reduction of contact points between soil particles,hysteresis quality of the soil dynamic load response strengthens and the damping ratio increases;when the fines content is greater than 30%,the dynamic characteristics of sand is determined mainly by the fine grains;the interfine void ratio decreases with increasing of fines content;so that the dynamic properties of sand shows a reverse trend.
引文
[1]SEED H B,LEE K L.Liquefaction of saturated sands during cyclic loading[J].Journal of the Soil Mechanics and Foundation Division,ASCE,1972,92(6):105-134.
    [2]YOUD T L,BENNETT M J.Liquefaction sites,Imperial Valley,California[J].Journal of the Soil Mechanics and Foundation Division,ASCE,109(3):440-457.
    [3]BAZIAR M H,DOBRY R.Liquefaction ground deformation predicted from laboratory tests[C]//Proc.2nd Int.Conf.on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics.St Louis:[s.n.],1991:451-458.
    [4]朱建群,孔令伟,钟方杰.粉粒含量对砂土强度特性的影响[J].岩土工程学报,2007,29(11):1647-1652.ZHU Jian-qun,KONG Ling-wei,ZHONG Fang-jie.Effect of fines content on strength of silty sands[J].Chinese Journal of Geotechnical Engineering,2007,29(11):1647-1652.
    [5]CHANG N Y,YEH S T,KAUFMAN L P.Liquefaction potential of clean and silty sands[C]//Proceedings of The 3rd International Earthquake Microzonation Conference,[S.l.]:[s.n.],1982:1017-1032.
    [6]DEZFULIAN H.Effects of silt content on dynamic properties of sandy soils[C]//Proceedings of Eighth World Conference on Earthquake Engineering.San Francisco:[s.n.],1982:63-70.
    [7]AMINI F,QI G Z.Liquefaction testing of stratified silty sands[J].Journal of Geotechnical and Geo-environmental Engineering,ASCE,2000,126(3):208-217.
    [8]SHEN C K,VRYMOED J L,UYENO C K.The effects of fines on liquefaction of sands[C]//Proceedings of The International Conference on Soil Mechanics and Foundation Engineering.Tokyo:[s.n.],1977:381-385.
    [9]FINN W D L,LEDBETTER R H,WU G.Liquefaction on silty soils:Design and analysis[C]//Proceedings of Ground Failures Under Seismic Conditions.New York:Geotechnical Special Publication,1994:51-76.
    [10]VAID V P.Liquefaction of silty soils[C]//Proceedings of Ground Failures Under Seismic Conditions.New York:Geotechnical Special Publication No44,1994:1-16.
    [11]ZLATOVIC S,ISHIHARA K.Normalized behavior of very loose non-plastic soils:Effects of fabric[J].Soils and Foundations,1997,37(4):47-56.
    [12]POLITO C P,MARTIN II J R.Effects of nonplastic fines on the liquefaction resistance of sands[J].Journal of Geotechnical and Geoenvironmental Engineering,2001,127(5):408-415.
    [13]周健,杨永香,贾敏才,等.细粒含量对饱和砂土液化特性的影响[J].水利学报,2009,140(10):1184-1188.ZHOU Jian,YANG Yong-xiang,JIA Min-cai,et al.Effect of fines content on liquefaction properties of saturated silty sands[J].Journal of Hydraulic Engineering,2009,140(10):1184-1188.
    [14]袁晓铭,孙锐,孙静,等.常规土类动剪切模量和阻尼比的试验研究[J].地震工程与工程振动,2000,20(4):133-139.YUAN Xiao-ming,SUN Rui,SUN Jing,et al.Laboratory experimental study on dynamic shear modulus ratio and damping ratio of soils[J].Earthquake Engineering and Engineering Vibration,2000,20(4):133-139.
    [15]费涵昌,吴一伟.黄浦江大桥桥址土层的动力特性研究[C]//第三届全国土动力学学术会议.上海:同济大学出版社,1990:303-308.
    [16]李刚,陈正汉,王权民.厦门市海积粉细砂的动力特性试验研究[J].四川建筑科学研究,2002,28(2):33-36.LI Gang,CHEN Zheng-han,WANG Quan-min.The experimental study of dynamic characteristic of fine silt in Xiamen[J].Sichuan Building Science,2002,28(2):33-36.
    [17]陈国兴,刘雪珠.南京及邻近地区新近沉积土的动剪切模量和阻尼比的试验研究[J].岩石力学与工程学报,2004,23(8):1403-1410.CHEN Guo-xing,LIU Xue-zhu.Testing study on ratio of dynamic shear moduli and ratio of damping for recently deposited soils in Nanjing and its neighboring areas[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(8):1403-1410.
    [18]孔军,高翔著.土力学与地基基础[M].北京:中国电力出版社,2008.
    [19]王艳丽,饶锡保,王勇,等.细粒含量对饱和砂土动孔压演化特性的影响[J].土木建筑与环境工程,录用待刊.WANG Yan-li,RAO Xi-bao,WANG Yong,et al.Effects of fines content on evolutionary characteristics of dynamic pore water pressure of saturated sands[J].Journal of Civil,Architectural&Environmental Engineering,in press.
    [20]王建华,要明伦.循环应变下饱和砂(粉)土衰化动力特性研究[J].水利学报,1997,(7):23-30.WANG Jian-hua,YAO Ming-lun.Degradation behavior of saturated sand and sandy loam under cyclic strain[J].Journal of Hydraulic Engineering,1997,(7):23-30.
    [21]THEVANAYAGAM S,FIORILLO M,LIANG J.Effect of nonplastic fines on undrained cyclic strength of silty sands[C]//Proceedings of Soil Dynamics and Liquefaction 2000.New York:Geotechnical Special Publication No.107,2000:77-91.
    [22]THEVANAYAGAM S.Effect of fines and confining stress on undrained shear strength of silty sands[J].Journal of Geotechnical and Geoenvironmental Engineering,1998,124(6):479-491.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心