多孔介质中的溶质扩散与浮重关系研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
考虑到多孔介质中的溶质扩散过程与浮重存在一一对应的关系,建立了一维情况下,反映溶质扩散与浮重关系的数学模型,并用有限体积方法获得模型的数值解。实例计算表明,当多孔介质中的溶质浓度高于周围流体中的溶质浓度时,溶质由孔隙向主流体中扩散,随着扩散进程的进行,多孔介质的浮重逐渐减小,并且浮重减小速率逐渐降低,从孔隙内部到孔隙出口,溶质浓度和溶液密度都逐渐降低。随着扩散系数或者孔隙率的增大,多孔介质的浮重减小速率增加,孔隙中的溶质浓度和溶液密度降低。随着周围流体中溶质浓度的增加,多孔介质的浮重减小,并且减小速率降低,孔隙中的溶质浓度和溶液密度增加。当主流体中的溶质浓度大于孔隙中的溶质浓度时,随着时间的增加,溶质由主流体逐渐向孔隙内扩散,多孔介质的浮重逐渐增加,并且浮重增加的速率逐渐降低,从孔隙内部到孔隙出口,溶质浓度和溶液密度逐渐增加。
Considering the one-to-one correlation between solute diffusion in porous media and the buoyed weight of porous media,a one-dimensional mathematical model,which reflected their relationship,was established and solved with finite volume method.By sample analysis,it shows that the solute will diffuse from pore space to ambient fluid when the solute concentration in the pore is higher than that in the ambient fluid.With the proceeding of solute diffusion,the buoyed weight of porous media declines little by little and its decreasing rate becomes slower,the solute concentration and solution density are both decreased from pore interior to exit.If the diffusion coefficient or the porosity becomes larger,the decreasing rate of buoyed weight becomes faster,and the solute concentration and solution density are both decreased simultaneously.When the solute concentration in ambient solution becomes higher,the buoyed weight declines and its decreasing rate becomes slower,and the solute concentration and solution density are both increased simultaneously.While the solute concentration in ambient fluid is higher than that in the pore space,with the increase of diffusion time,the solute will diffuse from ambient fluid to pore space which will lead to the increase of buoyed weight with gradually decreased its decreasing,now from the pore interior to exit,the solute concentration and solution density are both increased gradually.
引文
[1]仵彦卿.多孔介质污染物迁移动力学[M].上海:上海交通大学出版社,2007:82.
    [2]张永祥,陈鸿汉.多孔介质溶质运移动力学[M].北京:地震出版社,2000:57-62.
    [3]孙讷正.地下水污染[M].北京:地质出版社,1989:1-10.
    [4]李绍芬.化学与催化反应工程[M].北京:化学工业出版社,1986:205-209.
    [5]Satterfielo C N,Sherwood T K.The role of diffusion in catalysis[M].London:Addison-Wesley Publishing Company,1963:1-20.
    [6]Szekely J,Evans J W,Sohn H Y.Gas-solid reaction[M].Lon-don:Academic Press,1976:23-33.
    [7]谭凯旋.溶浸采矿的热力学和动力学[M].长沙:中南大学出版社,2003:137-153.
    [8]基里钦科.化学采矿法[M].家骏,译.北京:科学技术出版社,1960:1-33.
    [9]张荣华,胡书敏,童建昌,等.开放体系矿物流体反应动力学[M].北京:科学出版社,1998:18-20.
    [10]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995:243-248.
    [11]盖格,波伊里尔.冶金中的传热传质现象[M].俞景禄,魏季和,译.北京:冶金工业出版社,1981:527-531.
    [12]Sohn H Y,Wadsworth M E.Rate processes of extractive metallur-gy[M].New York:Plenum Press,1979:4.
    [13]赵长伟,马生,何明霞.液相扩散系数测定方法的近期研究进展[J].化学工业与工程,2002,19(5):374-379.
    [14]查传钰,吕刚.多孔介质中流体的扩散系数及其测量方法[J].地球物理学进展,1998,13(2):60-72.
    [15]沈兴.差热、热重分析与非等温固相反应动力学[M].北京:冶金工业出版社,1995:68-99.
    [16]陶文铨.数值传热学[M].西安:西安交通大学出版社,2001:90-98.
    [17]陶文铨.计算传热学的近代进展[M].北京:科学出版社,2005:233-248.
    [18]陶文铨.传热与流动问题的多尺度数值模拟:方法与应用[M].北京:科学出版社,2009:188-198.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心