半刚性连接钢框架关键柱破坏后动力响应分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
框架中关键柱破坏后,节点的连接刚度将会影响剩余结构的内力重分配及动力响应。建立了9层Benchmark钢结构模型,以端部约束系数r为参数,采用拆除构件法对关键柱破坏后结构体系的动力响应进行了分析,同时分析了不同位置柱破坏对结构体系的影响。分析结果表明:与失效柱相连处的梁其靠近失效点的梁端弯矩随节点连接刚度的增加并无明显变化规律,远离失效点的梁端弯矩随节点连接刚度的增加而增大;与失效柱相连处的梁中轴力随节点连接刚度增大而急剧减小,节点连接刚度大于一定值时,梁中轴力变化不明显;节点连接刚度的提高可以减小结构中关键构件的内力及变形,提高结构的抗倒塌能力。
If a key column fails in a frame,the redistribution of internal forces and dynamic responses will be affected by connection stiffness.A 9-story Benchmark model is created and the Alternate Path Method is adopted to perform the dynamic response of the structure with a key column destroyed.The influence of fixity factor and the effect of destroyed column position are analyzed.The results show that the moment on the end near the failure point of the beam connected to the destroyed column changes irregularly with the increase of connection stiffness while the moment on the end remote to the failure point of the beam increases with the increase of connection stiffness.The axial force in the beam connected to the destroyed column decreases rapidly with the increase of connection stiffness.While the connection stiffness is over a certain value,the axial force changes a little.The increase of connection stiffness results in the decrease of internal force and deformation of the key component in structures and therefore improves the progressive collapse resistance of structures.
引文
[1]BS8110-1:1997,Structural Use of Concrete:Part1:Code of Practice for Design and Construction[S].London:British Standards Institute,2002
    [2]Draft prEN1991-1-7,Eurocode1-Actions on Structures,Part1-7:Genneral Actions-Accidental Actions[S].Brussels:European Committee for Standardization,2005
    [3]General Service Administration.Progressive CollapseAnalysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects[S].2003
    [4]U S.Department of Defense.Unified Facilities Criteria:Design of Buildings to Resist Progressive Collapse[S].UFC4-023-03,2005
    [5]陆新征,江见鲸.世界贸易中心飞机撞击后倒塌过程的仿真分析[J].土木工程学报,2001,34(6):11-13Lu Xinzheng,Jiang Jianjing.Dynamic finite element simulation for the collapse of world trade center[J].China Civil Engineering Journal,2001,34(6):11-13(in Chinese)
    [6]马人乐,陈俊岭,何敏娟.建筑结构二次防御能力分析方法[J].同济大学学报(自然科学版),2006,34(5):569-573Ma Renle,Chen Junling,He Minjuan.Analytical method of alternative defensive ability for building structures[J].Journal of Tongji University(Natural Science),2006,34(5):569-573(in Chinese)
    [7]易伟建,何庆锋,肖岩.钢筋混凝土框架结构抗倒塌性能的试验研究[J].建筑结构学报,2007,28(5):104-117Yi Weijian,He Qingfeng,Xao Yan.Collapse performance of RC frame structure[J].Journal of Building Structures,2007,28(5):104-117(in Chinese)
    [8]胡晓斌,钱稼茹.单层平面钢框架连续倒塌动力效应分析[J].工程力学,2008,25(6):38-43Hu Xiaobin,Qian Jiaru.Dyanmic effect analysis during progressive collapse of a single-story steel plane frame[J].Engineering Mechanics,2008,25(6):38-43(in Chinese)
    [9]胡晓斌,钱稼茹.多层钢框架连续倒塌动力效应分析[J].地震工程与工程振动,2008,28(2):8-14Hu Xiaobin,Qian Jiaru.Dyanmic effect analysis of progressive collapse of multi-story steel plane frame[J].Journal of Earthquake Engineering and Engineering Vibration,2008,28(2):8-14(in Chinese)
    [10]欧进萍.结构振动控制:主动、半主动和智能控制[M].北京:科学出版社,2003Ou Jinping.Control for structural vibration:active,semi-active and Intelligent[M].Beijing:Science Press,2003(in Chinese)
    [11]Ohtori Y,Christenson R,Spencer B F.A MATLAB-based tool for nonlinear structural analysis[C/OL]∥Proceedings of13th Engineering Mechanics Conference,Baltimore,Maryland,USA,1999:13-16
    [12]FEMA356,Prestandard and Commentary for the Seismic Rehabilitation of Buildings[S].Federal Emergency Management Agency,November,2000
    [13]Computers and Structures,Inc.SAP2000analysis reference manual[M].Berkeley,California,2004
    [14]钟善桐.高层建筑组合结构框架梁柱节点分析与设计[M].北京:人民交通出版社,2006Zhong Shantong.Beam-to-column frame conections of tall-building composite structures analysis and design[M].Beijing:China Communication Press,2006(in Chinese)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心