钢-连续纤维复合筋增强混凝土柱抗震性能试验研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
具有稳定二次刚度和良好震后可修复性的钢-连续纤维复合筋(SFCB)增强混凝土柱的抗震性能与普通RC柱有较大差别,本文对在水平往复荷载作用下,轴压比为0.12的4个SFCB增强混凝土柱及1个RC对比柱的抗震性能进行试验研究。SFCB增强混凝土柱主要变化参数为SFCB中的纤维种类(玄武岩纤维和碳纤维)和钢/纤维比例。研究结果表明:①SFCB增强混凝土柱相对普通RC柱具有稳定的二次刚度,在复合筋内芯钢筋屈服后,SFCB增强混凝土柱承载力仍可稳定提高;②SFCB增强混凝土柱由于复合筋的二次刚度,实现了在与普通RC柱相同柱顶变形能力的前提下,具有较小柱脚曲率需求的特点,从而实现较小的卸载残余位移,较高的震后可修复性能;③SFCB增强混凝土柱的性能特点与复合筋中外侧纤维有直接关系,钢-玄武岩纤维复合筋增强混凝土柱相对于钢-碳纤维复合筋柱具有更好的延性(二次刚度有效长度)和相同柱顶侧向位移水平下卸载时更小的残余位移。
The seismic performance of concrete columns reinforced by Steel-FRP(Fiber Reinforced Polymer) Composite Bar(SFCB) is quite different from that of ordinary RC(Reinforced Concrete) columns.Horizontal cyclic loading tests were conducted on concrete columns reinforced by SFCB and ordinary steel bars,separately,with an axial compression ratio of 0.12.Fiber types(basalt and carbon fibers) and steel/fiber ratio of SFCB were the main variable parameters.Test results showed that: ①compared with ordinary RC column,concrete columns reinforced by SFCB had stable post-yield stiffness,and the load could increase significantly after the yielding of SFCB inner steel bar;②due to the post-yield stiffness of SFCB,SFCB reinforced concrete column had less column base curvature demand than ordinary RC column at the same column cap lateral deformation level,and therefore smaller unloading residual deformation could be achieved;③the outer FRP type of SFCB significantly influenced the performance of SFCB reinforced concrete columns,and steel-BFRP(basalt FRP) composite bar reinforced concrete columns had better ductility(longer effective length of post-yield stiffness) and smaller unloading residual deformation than steel-CFRP(carbon FRP) composite bar columns under the same unloading displacement.
引文
[1]马宏旺,吕西林.建筑结构基于性能抗震设计的几个问题[J].同济大学学报:自然科学版,2002,30(12):1429-1434(Ma Hongwang,Lu Xilin.Some problems aboutperformance-based seismic design[J].Journal of TongjiUniversity:Natural Science Edition,2002,30(12):1429-1434(in Chinese))
    [2]Christopoulos C,Pampanin S,Priestley M J N.Performance-based seismic response of frame structures including residualdeformations.Part I:Single-degree of freedom systems[J].Journal of Earthquake Engineering,20037,(1):97-118
    [3]Ruiz-Garcia J,Miranda E.Residual displacement ratios forassessment of existing structures[J].EarthquakeEngineering and Structural Dynamics,2006,35(3):315-336
    [4]Earthquake resistant design codes in Japan[S].Japan:Japan Society of Civil Engineers,2000
    [5]Iemura H,Takahashi Y,Sogabe N.Two-level seismicdesign method using post-yield stiffness and its applicationto unbonded bar reinforced concrete piers[J].StructuralEngineering/Earthquake Engineering,2006,23(1):109-116
    [6]Ou Y C,Chiewanichakorn M,Aref A J,et al.Seismicperformance of segmental precast unbonded posttensionedconcrete bridge columns[J].Journal of StructuralEngineering,2007,133(11):1636-1647
    [7]谢旭,布占宇.应用碳纤维筋控制桥墩地震损伤方法初探[J].浙江大学学报:工学版,2005,39(10):1589-1595(Xie Xu,Bu Zhanyu.Elementary study on usefulnessof carbon fiber for controlling bridge pier seismic damage[J].Journal of Zhejiang University:Engineering ScienceEdition,2005,39(10):1589-1595(in Chinese))
    [8]张鑫,韦合,叶列平.高强钢筋配筋混凝土框架结构抗震性能的试验研究[J].土木工程学报,2009,42(5):74-78(Zhang Xin,Wei He,Ye Lieping.Experimentalstudy on seismic performance of RC frames reinforced withhigh-strength steel[J].China Civil Engineering Journal,2009,42(5):74-78(in Chinese))
    [9]Macrae G A,Hoshikuma J,Nagaya K.Residual displacementresponse spectrum[J.]Journal of Structural Engineering,19981,24(5):523-530
    [10]Pettinga J D,Pampanin S,Christopoulos C,et al.Accountingfor residual deformation and simple approaches to theirmitigation[C]//First European Conference on EarthquakeEngineering and Seismology.Canterbury:University ofCanterbury,2006
    [11]吴智深,吴刚,吕志涛.钢-连续纤维复合筋增强混凝土抗震结构.中国,CN 1936206[P].2007-03-28
    [12]吴刚,罗云标,吴智深,等.钢-连续纤维复合筋(SFCB)力学性能试验研究与理论分析[J].土木工程学报,2010,43(3):53-61(Wu Gang,Luo Yunbiao,WuZhishen,et al.Experimental and theoretical studies onmechanical properties of steel-FRP composite bars[J].China Cvil Engineering Journal,2010,43(3):53-61(inChinese))
    [13]孙泽阳,吴刚,吴智深,等.钢-连续纤维复合筋(SFCB)与混凝土粘结性能试验研究[J].工程抗震与加固改造,2009,31(1):21-27(Sun Zeyang,Wu Gang,WuZhishen,et al.Experimental study on the bond behaviorbetween steel fiber composite bar(SFCB)and concrete[J].Earthquake Resistant Engineering and Retrofitting,2009,31(1):21-27(in Chinese))
    [14]罗云标,吴刚,吴智深,等.钢-连续纤维复合筋(SFCB)增强混凝土柱抗震性能初探[J].工程抗震与加固改造,20093,1(1):14-20,34(Luo Yunbiao,Wu Gang,WuZhishene,t al.Numerical study on seismic performance ofsteel fiber composite bar(SFCB)reinforced concretecolumn[J].Earthquake Resistant Engineering andRetrofitting,2009,31(1):14-20,34(in Chinese))
    [15]Wu Gang,Wu Zhishen,Luo Yunbiao,et al.Mechanicalproperties of steel-FRP composite bar under uniaxial andcyclic tensile loads[J].Journal of Materials in CivilEngineering,20102,2(10):1056-1066
    [16]戴宜全,何小元,孙泽阳.改进数字图像相关法测量混凝土柱弯转角[J].工程抗震与加固改造,2010,32(5):69-74(Dai Yiquan,He Xiaoyuan,Sun Zeyang.Bending test of concrete pole by improved digital imagecorrelation[J].Earthquake Resistant Engineering andRetrofitting,2010,32(5):69-74(in Chinese))
    [17]唐九如.钢筋混凝土框架节点抗震[M].南京:东南大学出版社,1989(Tang Jiuru.Seismic resistance of jointsin reinforced concrete frames[M].Nanjing:SoutheastUniversity Press,1989(in Chinese))
    [18]Takeda T,Sozen M A,Nielsen N N.Reinforced concreteresponse to simulated earthquakes[J].Journal of theStructural Division,19709,6(12):2557-2573

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心