土-桩-框架结构非线性相互作用的精细数值模型及其验证
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
利用有限元软件ABAQUS,建立了土-桩-框架结构非线性相互作用(SSI)的二维精细有限元模型,分别采用记忆型粘塑性嵌套面模型和损伤塑性模型模拟土体和混凝土材料,采用梁单元和rebar单元模拟RC桩基及其内部纵筋,采用接触面对法模拟桩土接触效应,取得了良好的计算效果。将自由场、框架、土-桩-框架结构模型的分析结果和其它成熟的计算软件进行对比,验证了数值模型的有效性。分析发现:桩基外侧靠近承台处的土体的非线性反应很强烈,而桩基内部土体的非线性反应较小,很大程度上只是跟随群桩一起运动。由于桩土动力接触,桩顶的加速度反应可能超出上部结构,并且桩顶的加速度时程曲线上有非常明显的"针"状突变。随着地震动强度的增加,上部框架逐渐表现出单自由度体系的动力特征,加速度反应谱有从多个波峰退化为单一波峰的趋势。
A 2D finite element model of soil-pile-frame structure nonlinear interaction was developed using finite element software ABAQUS.Damaged plasticity model and dynamic visco-plastic memorial nested yield surface model were adopted to model concrete and soil respectively.Beam element and rebar element were used to model RC piles and inner longitudinal rebars.A surface-based contact pairs method was used to simulate the interaction effect between soil and piles.The numerical models of free field,frame structure and soil-pile-frame structure were validated by comparing its analytical predictions with other well verified software results.It is concluded that the nonlinear response of soil close to pile cap is very large,while the soil between pile groups has a small nonlinear response and moves with pile groups together to a great extent. The acceleration response of pile cap may be larger than that of the superstructure because of soil-pile interaction effect.In addition,the acceleration histories of the pile cap show obvious spikes.With increase of seismic intensity,the acceleration response spectra show a tendency of degeneration from multiple peaks to single peak which reveals characteristic of single degree-of-freedom system.
引文
[1]Donovan K,Pariseau W,Cepak M.Finite element approach to cable bolting in steeply dipping VCR slopes [C]//Geomechanics Applications in Underground Hard Rock Mining,New York,US A:Society of Mining Engineers of AIME,1984.65-90.
    [2]Itasca.FLAC User's Manual,V5.0[M].Minneapolis, Minnesota,USA:Itasca Consulting Group Inc,2005.
    [3]张峰.计算土力学[M].北京:人民交通出版社, 2007.173-174. Zhang F.Computing Soil Mechanics[M].Beijing:China Communications Press,2007.173-174.
    [4]Jankowiak T,Lodygowski T.Identification of parameters of concrete damage plasticity constitutive model [J].Foundations of Civil and Environmental Engineering, 2005,(6):53-69.
    [5]Hibbitt K,Sorenson I.ABAQUS Analysis User's Manual,V6.8[M].Providence Rhode Island,USA: Abaqus Inc,2005.
    [6]庄海洋,陈国兴,朱定华.土体动力粘塑性记忆型嵌套面本构模型及其验证[J].岩土工程学报,2006,28 (10):1267-1272. Zhuang H Y,Chen G X,Zhu D H.Dynamic visco-plastic memorial nested yield surface model of soil and its verification[J].Chinese Journal of Geotechnical Engineering, 2006,28(10):1267-1272.
    [7]Hardin B,Drnevich V.Shear modulus and damping in soils:design equations and curves[J].Journal of the Soil Mechanics and Foundations Division,ASCE, 1972,98(7):667-692.
    [8]Yoshida N,Kobayashi S,Suetomi I,et al.Equivalent linear method considering frequency dependent characteristics of stiffness and damping[J].Soil Dynamics and Earthquake Engineering,2002,22(3):205-222.
    [9]袁晓铭,孙锐,孙静,等.常规土类动剪切模量比和阻尼比试验研究[J].地震工程与工程振动,2000,20 (4):133-139. Yuan X M,Sun R,Sun J,et al.Laboratory experimental study on dynamic shear modulus ratio and damping ratio of soils[J].Earthquake Engineering and Engineering Vibration,2000,20(4):133-139.
    [10]Kramer S.Geotechnical Earthquake Engineering[M]. Upper Saddle River,NJ:Prentice Hall,1996.
    [11]A D Ufuk Yazgan.Post-earthquake Residual Deformations and Seismic Performance Assessment of Buildings [R].Switzerland:Institute of Structural Engineering, ETH-Zurich,2006.
    [12]张之颖,吕西林,楼梦麟,等.软基SSI体系动力特性研究——一阶模态化趋势[J].岩石力学与工程学报, 2004,23(9):1502-1508. Zhang Z Y,L(?) X L,Lou M L,et al.Study on influence of soft soil on dynamic characteristics of upper structure [J].Chinese Journal of Rock Mechanics and Engineering, 2004,23(9):1502-1508.
    [13]Chau K T,Shen C Y,Guo X.Nonlinear seismic soil-pile -structure interactions:shaking table tests and FEM analyses[J].Soil Dynamics and Earthquake Engineering, 2009,29(2):300-310.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心