地基液化导致沉箱码头破坏及地基加固方法的非线性数值分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
地震作用引发的地基液化,往往导致沉箱基础的破坏。本文基于Biot两相饱和多孔介质动力耦合理论,采用FE-FD耦合数值分析方法,对液化海床沉箱基础的地震反应进行非线性有效应力分析。在数值分析过程中,建立了以土骨架位移和超静孔隙水压力表达的us-pw动力固结方程和循环弹塑性本构模型,该方法能够很好地模拟地震作用下沉箱码头的动力特性及液化破坏的影响。通过数值模拟计算,分析了采用碎石桩进行置换砂区域的防液化加固方法,并就碎石桩处理区域的选择提出了建议。
The soil liquefaction due to earthquakes will usually result in the damage of caisson foundation.Based on the Biot′s dynamic consolidation theory for two-phase media,a coupled FE-FD method is used in this paper to analyze the effective pore water pressure in liquefied seabed caisson foundation.In the numerical analysis,us-pw formulation of dynamic consolidation equation and cyclic elastic-plastic constitutive model is used,and the analytic results have shown that the method performs well in simulating the seabed liquefaction process.The strengthening method to prevent the liquefaction of sand zones by gravel piles was analyzed with the numerical method to suggest how to select the sand zones treated by gravel piles.
引文
[1]1995年兵库县南部地震による港湾设施等被害报告[R].京都:京都大学港湾所.1997.
    [2]京都大学防灾研究所.阪神淡路大震灾—防灾研究への取り组み[M].京都:[s.n.],1996.
    [3]谢定义,张建民.饱和砂土瞬态动力学特性与机理分析[M].西安:陕西科学技术出版社,1995.
    [4]黄茂松,周健,吴世明.饱和多孔介质土动力学理论与分析方法[C]∥土动力学与岩土工程抗震——第六届全国土动力学学术会议论文集.北京:中国建筑工业出版社,2002.68-83.
    [5]Oka F,Yashima A,Tateishi A,et al.A cyclic elas-to-plastic constitutive model for sand considering aplain-strain dependence of the shear modulus[J].Geotéchnique,1999,49(5):661-680.
    [6]刘汉龙,井合进,一井康二.大型沉箱码头岸壁地震反应分析[J].岩土工程学报,1998,20(2):26-30.Liu H L,Susumu Iai,Koji Ichii.Seismic responseanalysis of large-size caisson quay wall[J].ChineseJournal of Geotechnical Engineering,1998,20(2):26-30.
    [7]黄雨,八厚,张锋.液化场地桩-土-结构动力相互作用的有限元分析[J].岩土工程学报,2005,27(6):646-651.Huang Y,Yashima Atsushi,Zhang F.Finite elementanalysis of pile-soil-structure dynamic interaction inliquefiable site[J].Chinese Journal of GeotechnicalEngineering,2005,27(6):646-651.
    [8]李守德,俞洪良.Goodman接触面单元的修正与探讨[J].岩石力学与工程学报,2004,23(15):2628-2631.Li S D,Yu H L.Modification of Goodman interfaceelement[J].Chinese Journal of Rock Mechanics andEngineering,2004,23(15):2628-2631.
    [9]张艳美,张旭东,张鸿儒.碎石桩复合地基抗液化性能的数值模拟[J].工业建筑,2008,38(2):59-63.Zhang Y M,Zhang X D,Zhang H R.Numerical sim-ulation of anti-liquefaction characteristic of stonecolumns composite foundation[J].Industrial Con-struction,2008,38(2):59-63.
    [10]刘汉龙,左威龙,陈永辉,等.浆固碎石桩荷载传递特性试验与数值分析[J].防灾减灾工程学报,2008,28(4):524-528.Liu H L,Zuo W L,Chen Y H,et al.Numerical analy-sis and model tests on axial load transfer of groutedgravel pile[J].Journal of Disaster Prevention andMitigation Engineering,2008,28(4):524-528.
    [11]张艳美.碎石桩复合地基抗液化性能数值模拟及应用研究[D].北京:北京交通大学,2006.Zhang Y M.Numerical simulation of anti-liquefactioncharacteristic of stone columns composite foundation[D].Beijing:Beijing Jiaotong University,2006.
    [12]Alam M J,Towhata I,Sato H.Earthquake damagemitigation of existing gravity type caisson quay wallby sand compaction piles[C]∥Proceeding of 39thAn-nual Conference of Japanese Geotechnical Society,Japan:Niigata,2004,1943-1944.
    [13]Dakoulas P,Gazetas G.Effective-stress analysis ofgravity quay walls[C]∥Proceedings of the 11thInter-national Conference on Soil Dynamics and EarthquakeEngineering and the 3rdInternational Conference onEarthquake Geotechnical Engineering.Berkeley:[s.n.],2004,326-333.
    [14]Zeng X.Seismic response of gravity quay walls I:cen-trifuge modeling[J].Journal of Geotechnical andGeoenvironmental Engineering,1998,124(5):406-417.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心