型钢混凝土框架pushover分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
Pushover分析方法是逐渐得到广泛应用的一种评估结构抗震性能的简化方法。由于型钢混凝土(SRC)构件塑性铰属性确定方面的原因,SRC构件难以直接应用于pushover分析方法,而常采用按"等刚度"原则转化为钢筋混凝土构件(RC)进行计算。本文从理论上给出了SRC压弯构件N-M相关曲线、Mx-My相关曲线的形成方法,提出了SRC构件M-φ曲线的确定及转化为塑性铰曲线的原则,并研究了SRC构件塑性铰区等效长度的计算方法,可为SRC结构进行pushover分析提供参考数据。按照本文方法,采用pushover方法对两跨三层SRC框架进行分析,结果与该结构模型振动台实验吻合较好。在此基础上,对10层SRC框架和采用刚度等效的3层、10层的钢筋混凝土(RC)框架进行了对比分析,结果表明,随着层数的增加,SRC结构相对于RC结构表现出更优越的抗震耗能能力。
Pushover analysis is a simplified method for structure seismic evaluation,which is extensively used gradually.For some problems of the determination of plastic hinge property,it is difficult to carry out pushover analysis directly for steel reinforced concrete(SRC) structure,which is often substituted by reinforced concrete(RC) member with equal rigidity when pushover analysis is needed.This paper presents some computing methods of N-M,Mx-My interrelated curves of SRC members theoretically,gives the determination means of M-φ curve of SRC member,puts forward the principle to form M-φ curve of PMM hinge transformed from that of SRC member,and provides the calculation formula of plastic hinge length,all of which may be referenced for SRC structure pushover analysis.According to the proposed method in this paper,pushover analysis is performed for a SRC frame with two bays and three stories,of which the results are in a good agreement with that of test.In the end,a comparative study is carried out between SRC frame and RC frame with equal rigidity based on the results of pushover analysis,which demonstrates that the SRC structure has predominant seismic behavior over RC structure with the number of structure stories increasing.
引文
[1]GB 50011—2001建筑抗震规范[S].北京:中国建筑工业出版社,2001.
    [2]白国良,秦福华.型钢钢筋混凝土原理与设计[M].上海:上海科学技术出版社,2001:16-23.
    [3]薛建阳,赵鸿铁.型钢混凝土框架模型的弹塑性地震反应分析[J].建筑结构学报,2000,21(4):28-33.
    [4]白国良,李红星,张淑云.超高层建筑混合结构体系的现状及发展[J].建筑结构,2006,36(8):64-68
    [5]北京金土木软件技术有限公司等.SAP2000中文版使用指南[M].北京:人民交通出版社,2006:450-486.
    [6]Vivo L De,Rosati L.Ultimate strength analysis of reinforced concrete sections subject to axial force and biaxial bending[J].Comput.Methods Ap-pl.Mech.Engrg.1998,166(10):261-287.
    [7]Bonet J L,et al.Comparative study of analytical and numerical algorithms for designing reinforced concrete sections under biaxial bending[J].Computers and Structures,2006,84(12):2184-2193.
    [8]Dundar C,Jokgoz s,Tanrikulu AK,et al.Behaviour of reinforced and concrete-encased composite columns subjected to biaxial bending and axialload[J].Building and Environment,2008,43(6):1109-1120.
    [9]Furlong R W.Concrete columns under biaxially eccentric thrust[J].ACI Journal October,1979:1093-118.
    [10]Brelser B,Design criteria for reinforced concrete columns under axial load and biaxial bending,[J].Journal Procedings,1960,57(11):481-490.
    [11]Parme A L,Nieves J M,Gonwens A.Capacity of reinforced rectangular columns subject to biaxial bending[J].proceedings,1966,63(9):911-920.
    [12]JGJ 138—2001型钢混凝土组合结构技术规程[S].北京:中国建筑工业出版社,2002.
    [13]张兴武,姜维山,彦卫亨.型钢钢筋混凝土偏心受压构件配钢量计算[J].哈尔滨建筑大学学报,1997,30(5):219-235.
    [14]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999:298-300.
    [15]冯世平.钢筋混凝土框架结构屈服后性能的研究[D].北京:清华大学,1985.
    [16]侯爽,欧进萍.结构pushover分析的侧向力分布及高振型影响[J].地震工程与工程振动,2004,24(3):89-97.
    [17]马永欣,郑山锁.结构实验[M].北京:科学出版社,2001:208-233.
    [18]王连广.钢与混凝土组合结构理论与计算[M].北京:科学出版社,2001:376-382.
    [19]Corley W G.Rotation capacity of reinforced concrete beams[J].Research and Development,1966,92(5):121-146.
    [20]Kent D C,Park R.Flexural Members with confines concrete[J].Journal of the Structural Divison,1971,97(7):1969-1990.
    [21]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001:128-152.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心