埋地球墨铸铁供水管道柔性接口在不同轴向变形下供水功能试验
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
目的研究覆土情况下埋地球墨铸铁管道在不同轴向变形下的破坏情况,确定地震作用下管道接口抗拉拔强度,以该指标作为判断管道抗震性能的依据.方法采用T型胶圈连接直径为200mm的球墨铸铁管道.管道埋深为0.6m,下部铺垫0.2m厚的砂土,左侧和右侧分别铺垫0.3m的砂土,进行6种不同位移工况下的静载拉拔试验.结果 48mm、52mm、58mm3个工况属于小位移不漏时的工况,此时水压基本稳定;65mm工况是微漏的工况,水压略微有下降,到0.15MPa仍能能满足供水;68mm是小漏的工况,水压明显下降,降到0.1MPa仍能满足供水;68mm工况以后是全程工况,此时已经大漏,水压迅速下降直至到0,不能满足供水.结论球墨铸铁管柔性接口管道抗震性能较好,胶圈质量对抗震性能有重要影响,增加承插式管道的承口深度有助于提高管道的抗震性能.
Based on the analysis of ductile iron pipe buried under different deformation,the drawing performance of the pipeline in the earthquake could be determined,which could also be taken as a basis for pipe's seismic performance.Taking the T-Aprons as the flexible interface of the ductile iron pipe,pipe,diameter's 200 mm,is buried at 0.6 m deep with 0.2 m thick sand below,and 0.3 m thick sand on the right and left sides.Six different displacement conditions were carried out in our tests.The results show that the working conditions of 48 mm,52 mm,58 mm are small displacements,indicating that pipe does not leak,water pressure is stable at this time.However,65 mm's condition is the micro-leakage condition,with water pressure dropping slightly to 0.15 MPa but still meeting the water provision.The 68 mm's condition is the small leakage condition,with water pressure decreasing significantly to 0.1 MPa and still meeting the water provision.When pipe's diameter over 68 mm,which led to a large leak,the water pressure decreased rapidly down to 0 and it can not provide water at all.In a conclusion,the better flexible interface ductile iron pipe has,the better seismic performance it will produce.Meanwhile the aprons' quality places a major impact on the seismic performance,therefore,we make the socket-type pipe's socket depth longer to improve the seismic performance of pipelines.
引文
[1]赵成刚,冯启民.生命线地震工程[M].北京:地震出版社,1994.(Zhao Chenggang,Feng Qimin.Lifeline earthquakeengineering[M].Beijing:Earthquake Press,1994.)
    [2]Xu Chengchao,Goulter I.C.Probabilistic model for water distribution reliability[J].Water Resources Planning and Management,1998,124(4):218-228.
    [3]O'Rourkc M J,Liu X.Response of buried pipeline subjected to earthquake effects[J].International Journal of Soil Dynamics and Earthquake Engineer-ing,1998,9(1):44-55.
    [4]Zerva A,Ang A H S,Wen Y K.Lifeline response to spatially variable ground motion[J].Earthquake En-gineering and Structural Dynamics,1988,16(3):361-369.
    [5]李杰.复杂生命线工程系统的地震反应分析与行为控制[J].中国科学基金,1996,13(6):335-338.(Li Jie.Complex lifeline seismic response analysis of engineering systems and behavioral control[J].The Chinese Science Foundation,1996,13(6):335-338.)
    [6]李杰.生命线工程的研究进展与发展趋势[J].土木工程学报,2006,1:1-3.(Li Jie.Lifeline engineering research and develop-ment[J].Civil Engineering University,2006,1:1-3.)
    [7]李杰.生命线工程抗震—基础理论与应用[M].北京:科学出版社,2005.(Li Jie.Lifeline earthquake engineering-basic theory and applications[M].Beijing:Science Press,2005.)
    [8]Kennedy.Empirical prediction equations for peak ground velocity derived from strong-motion records from Europe and the Middle East[J].Bulletin of the Seismological Society of America,2007,97(2):511-530.
    [9]孙绍平.中国地下管道的震害[M].北京:学术书刊出版社,1990.(Sun Shaoping.China's underground pipeline dam-age[M].Beijing:Academic Books Press,1990.)
    [10]Sun Shaoping.A review of lifeline earthquake in China[C]//Proceeding of Second China-Japan-US Trilateral Symposium on Lifeline Earthquake Engi-neering,USA:Earthquake Engineering and Structur-al Dynamics,1994.
    [11]周静海,赵海艳,魏立群.球墨铸铁供水管线在地震作用下功能性实验分析[J].沈阳建筑大学学报:自然科学版,2008,24(2):196-199.(Zhou Jinghai,Zhao Haiyan,Wei Liqun.Experiment research on functionality ductile cast iron pipelines under the earthquake[J].Journal of Shenyang Jianzhu University:Natural Science,2008,24(2):196-199.)

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心