地基砂土液化判别方法探讨
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
本文以我国《水利水电工程地质勘察规范》(GB 50287-2008)中的标准贯入锤击数液化判别法为基础,以该法进行应力修正的方法为依据,提出了采用附加应力等效埋深来考虑有限面积基础建筑物附加应力随深度扩散影响的液化判别新思路,以工程设计中参数取值常用平均值和小值平均值来考虑标贯击数和黏粒含量的离散性,同时借用有限元网格离散求解思路确定砂层可能液化的区域。以宁朗水电站闸坝工程为例进行了案例分析,结果表明:在地震设防烈度VII度时,闸基下中细砂层近震时不发生液化,远震时在闸基4个角点下的局部小区域内发生液化。
In this paper, a new idea adopting equivalent fill embedded depth of subsidiary stress was put forward to consider the influence of subsidiary stress caused by superstructure with a finite foundation. It was based on the SPT blow count method in Code for Geological Investigation of Water Resources and Hydropower Engineering(GB 50287-2008). Mean value method was used to consider the discreteness of the SPT blow count and clay content, and finite element method was used to determine the liquefaction area. A case study was introduced by evaluating the overburden liquefaction of the gate-dam structure in Ninglang Hydropower Station. The results showed that there was no liquefaction occurred in the sand layer under the gate-dam when suffering near earthquake, and only local areas at the corners of the structure were liquefied when suffering the far earthquake.
引文
[1]Seed H B,Idriss I M.Simplified procedure for evaluation soil liquefaction potential[J].Journal of Geotechnical Engineering,ASCE,1971,97(9):297-313.
    [2]NCEER.Technical Report NO.NCEER-97-0022.National Center for Earthquake Engineering Research[M].University of Buffalo,Buffalo,New York,1997.
    [3]Youd T L,Idriss I M,Andrus,et al.Liquefaction resistance of soils:summary report[J].Journal of Geotechni cal and Geoenvironmental Engineering,ASCE,2001,127(4):297-313.
    [4]Seed R B,Cetin K O,Moss R E,et al.Recent advances in soil liquefaction engineering and seismic site re sponse evaluation[C]//Proceedings of Fourth International Conference on Recent Advances in Geotechnical Earth quake Engineering and Soil Dynamics.San Diego,California,2001:1-45.
    [5]Seed R B,Cetin K O,Moss R E,et al.Recent advances in soil liquefaction engineering:a unified and consistent framework[C]//26th Annual ASCE Los Angeles Geotechnical Spring Seminar.Keynote Presentation,H.M.S.Queen Mary,Long Beach,California,2003:1-71.
    [6]Cetin K O,Seed R B,Kiureghian A D,et al.Standard penetration test-based probabilistic and deterministic as sessment.of seismic soil liquefaction potential,Journal of geotechnical and geoenvironmental engineering[J].ASCE,2004,(12):1313-1340.
    [7]石兆吉,王兰民.土壤动力特性·液化势及危害性评价[M].北京:地震出版社,1999.
    [8]王锺琦.地震液化的宏观研究[J].岩土工程学报,1982,4(3):1-10.
    [9]刘惠珊,乔太平.有基础作用时饱和砂层的液化特性[C]//地基与工业基础抗震.北京:地震出版社,1984.
    [10]Ishihara K,Matsumoto K.Bearing capacity of saturated sand deposits during vibrations[C]//Proceedings of4th Japan Earthquake Engineering Symposium,1975.
    [11]Whitman R V,Klapperich H.Model tests for earthquake simulation of geotechnical problems[J].Soil Dynamics and Liquefaction,1989,2:323-334.
    [12]Finn W D,et al.Analysis of pore water pressure in seismic centrifuge tests[J].Soil Dynamics and Liquefaction,1987,3:71-85.
    [13]YoshiakY,Kohji T.Settlement of buildings on saturated sand during earthquakes[J].Soil and Foundations,1977,17(1):23~28.
    [14]Popescu R.Centrifuge validation of a numerical model for dynamic soil liquefaction[J].Soil Dynamics and Earthquake Engineering,1993,12(2):73-90.
    [15]Dobry.Centrifuge of shallow foundations on saturated sand during earthquakes[C]//Proceedings from4th Ja pan-U.S workshop on earthquake resistant design of lifeline facilities and countermeasures for soil liquefaction.Honolulu,1995:493-508.
    [16]Kawastk.Dynamic centrifuge modeling of an isolated footing for transmission line tower[C]//Proceedings from the sixth Japan-US workshop on earthquake resistant design of lifeline facilities and countermeasure soil liquefaction.Kawask,1996:234-243.
    [17]陈文化,门福录,景立平,等.有建筑物存在的饱和砂土地基液化振动台模拟试验研究[J].地震工程与工程振动,1998,18(4):54-60.
    [18]Men Fulu,Cui Jie.Seismic liquefaction of subsoils of buildings[C]//Proceedings of3rd Euro.Conf.on Structur al Dynamics.Florence,1996:1051-1058.
    [19]Men Fulu,Cui Jie.Influence of building existence on seismic liquefaction of subsoiIs[J].Earthquake Engineer ing and Structural Dynamics,1997,(26):691-699.
    [20]门福禄,崔杰,陈文化,等.建筑物饱和砂地震液化判别的简化分析方法[J].水利学报,1998(5):33-38.
    [21]陈文化,崔杰,门福录,等.建筑物非均质地基的地震液化有效应力判别法[J].水利学报,2000(10):36-43.
    [22]景立平,陈文化,葛立臣.考虑非线性的建筑物地基地震液化简化分析方法[J].地震工程与工程振动,2001,2(21):121-125.
    [23]王健,陈文华.广州地铁车站非自由场砂土层地震液化判别方法研究[C]//海峡两岸地工技术、岩土工程交流研讨会论文集.中国台北,2004:748-755.
    [24]陈文化.地基归一化液化判别及临界击数推导[C]//第七届全国土动力学学术会议论文集.北京,2006:255-258.
    [25]柯安.建筑物对地震引致回填土壤液化潜能影响之评估[D].台湾:国立海洋大学,2000.
    [26]GB50287-99,水利水电工程地质勘察规范[S].
    [27]杨宏昆,等.宁朗水电站可研工程地质报告[R].成都:四川省清源工程咨询有限公司,2008.
    [28]杨宏昆,等.宁朗水电站可研水工报告[R].成都:四川省清源工程咨询有限公司,2008.
    [29]周荣军,叶友清,等.水洛河宁朗电站工程场地地震安全性评价报告[R].成都:四川赛斯特科技有限责任公司,2007.
    [30]杨玉生,刘小生,等.宁朗水电站闸坝基础覆盖层砂土液化判别研究报告[R].北京:中国水利水电科学研究院,2008.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心