反应堆堆芯围筒结构热流固耦合热变形分析
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
针对反应堆堆芯围筒热流固耦合问题,采用三维有限元法研究堆芯围筒的热变形.考察ANSYS的三维实体热单元SOLID 70,三维实体单元SOLID 45,三维表面热效应单元SURF 152和三维热-流耦合管单元FLUID 116等单元类型的特点和实用性.建立堆芯围筒、吊篮和冷却剂的温度分析有限元模型:堆芯围筒和吊篮采用SOLID 70,结构表面与冷却剂的对流传热表面采用SURF152,堆芯围筒与吊篮之间冷却剂采用FLUID 116.采用SOLID 45建立堆芯围筒有限元模型,根据得到的堆芯围筒、吊篮和冷却剂的温度场结果分析堆芯围筒热变形.结果表明,在考虑堆芯围筒及吊篮固体和流体的交叉耦合的基础上,采用三维有限元法能比较客观地模拟反应堆堆芯处的复杂运行环境.
As to the thermal-fluid-structure coupling issue of reactor core shroud,the thermal deformation of core shroud is researched by 3D finite element method.The characteristics and practicability are researched for ANSYS element types including 3D solid thermal element SOLID 70,3D solid element SOLID 45,3D surface thermal effect element SURF 152 and 3D thermal-fluid coupling pipe element FLUID 116.The finite element models of thermal analysis are built for reactor core shroud,barrel and coolant.For the models,the core shroud and barrel are modeled by SOLID 70;the structure surface and convective heat transfer surface of coolant are modeled by SURF 152;the coolant between core shroud and barrel is modeled by FLUID 116.The finite element model of thermal deformation analysis is built for core shroud by SOLID 45,and the thermal deformation of core shroud is analyzed according to the temperature field results of core shroud,barrel and coolant.The results indicate that,considering the thermal-fluid-structure coupling among core shroud,barrel and coolant,the complex running environment of reactor core shroud can be simulated objectively by 3D finite element method.
引文
[1]钟万勰.发展自主CAE软件的战略思考[J].计算机辅助工程,2008,17(3):I-II.ZHONG Wanxie.Strategic thinking on independent development of CAE software in China[J].Comput Aided Eng,2008,17(3):I-II.
    [2]赵飞云,于浩,贺寅彪,等.CAE分析技术在第三代核电设备国产化中的任务和方向[J].计算机辅助工程,2011,20(3):85-87.ZHAO Feiyun,YU Hao,HE Yinbiao,et al.Goals and direction of CAE analysis technology of third generation nuclear power equipment localization[J].Comput Aided Eng,2011,20(3):85-87.
    [3]林诚格.非能动先进核电厂AP1000[M].北京:原子能出版社,2008:4-15.
    [4]孙汉虹.第三代核电技术AP1000[M].北京:中国电力出版社,2010:220-225.
    [5]韩良弼,徐定耿,姚伟达.728核电站反应堆本体的结构力学分析研究[J].动力工程,1983(1):71-72.HAN Liangbi,XU Dinggen,YAO Weida.Structural mechanic analysis study on728nuclear plant reactor system[J].Power Eng,1983(1):71-72.
    [6]姜乃斌,臧峰刚,张利民,等.反应堆压力容器及堆内构件整体大规模三维有限元地震分析[J].核动力工程,2011,32(2):44-47.JIANG Naibin,ZANG Fenggang,ZHANG Limin,et al.Seismic analysis on integral reactor system with large-scale three-dimensional finite element method[J].Nucl Power Eng,2011,32(2):44-47.
    [7]赵飞云,黄庆,朱焜,等.基于热流固耦合效应的堆芯围筒温度分析方法研究[J].核动力工程,2011,32(S1):134-136.ZHAO Feiyun,HUANG Qing,ZHU Kun,et al.Temperature analysis study on core shroud based on thermal-fluid-structure coupling effect[J].Nucl Power Eng,2011,32(S1):134-136.
    [8]ASME锅炉及压力容器委员会材料分委员会.ASME锅炉及压力容器规范国际性规范II材料D篇:性能[M].中国《ASME规范产品》协作网,译.北京:中国石化出版社,2000:594-605.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心