密肋壁板结构弹塑性计算模型研究
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
密肋壁板结构中多种材料及构件的使用与嵌套,使实体计算模型比较复杂,故对于整体结构在地震动作用下的全过程受力分析,需提出结构的弹塑性简化计算模型。根据不同的分析目的,结合课题组前期研究成果,提出密肋壁板结构在弹塑阶段两种简化计算模型-刚架-等效斜压杆模型和刚架-整体斜撑模型。利用前期墙体拟动力试验研究结果,采用刚架-等效斜压杆模型对结构进行推覆及动力反应分析,验证模型的正确性;利用前期1/10比例振动台试验研究结果,采用刚架-整体斜撑模型对结构进行时程分析,验证刚架-整体斜撑模型的正确性。理论与试验表明:刚架-斜压杆模型具有一定的计算精度与实用性,适用于密肋复合墙体的非线性数值分析;刚架-整体斜撑模型兼顾高效性与精确性,适用于整体结构在大震下的弹塑性时程反应分析。
A multi-ribbed slab structure consists of various materials and its components nest each other,thses makes the whole calculation model of the structure extremely complicated.Therefore,it is necessary to present an elasto-plastic model for the whole stressing process of the structure under strong seismic action.According to different analysis objectives,a rigid frame-equivalent diagonal strut model and a rigid frame-whole bracing model for an eco-composite wall structure in elastic-plastic stage were presented.According to the previous results of pseudo-dynamic test on the walls,the rigid frame-equivalent diagonal strut model was employed to perform push-over and dynamic response analysis,therefore,the validity of the model was verified.Based on the previous results of shaking table tests with 1 / 10 ratio,the rigid frame-whole bracing mode was employed to perform the time-history analysis,therefore,the validity of the model was also verified.Theoretical studies was and experimental analysis showed that the rigid frame-equivalent diagonal strut model possesses a certain calculation accuracy and feasibility and is suitable for nonlinear numberical analysis of multi-ribbed composite walls;the rigid frame-whole bracing model with higher accuracy and efficiency is applicable to structural elastic-plastic and time-history analysis under strong seismic action.
引文
[1]黄炜,姚谦峰,章宇明,等.内填砌体的密肋复合墙体极限承载力计算[J].土木工程学报,2006,39(3):68-75.
    [2]姚谦峰,黄炜,田洁,等.密肋复合墙体受力机理及抗震性能试验研究[J].建筑结构学报,2004,25(6):67-74.
    [3]黄炜,张程华,姚谦峰,等.密肋壁板结构简化计算模型对比分析[J].振动与冲击,2009,28(7):187-222.
    [4]Saneinejad.A,Hobbs.B.Inelastic design of infilled frames[J].Journal of Structure Engineering,1995,121(4):634-650.
    [5]李轩.基于Pushover分析的多层密肋壁板结构抗震设计方法研究[D].西安建筑科技大学,2006.
    [6]北京金土木软件技术有限公司.中国建筑标准设计研究院.SAP2000中文版使用指南.人民交通出版社.2006:460-474.
    [7]黄炜,陈国新,姚谦峰.密肋复合墙体在拟动力试验下的抗震性能研究[J].振动与冲击,2007,26(3):49-54.
    [8]荆罡,姚谦峰,侯莉娜,等.密肋壁板结构计算模型及Pushover分析[J].世界地震工程,2009,25(4):120-125.
    [9]刘建新.填充墙框架结构的一种新的计算模型[J].工程抗震,1994(3):22-25.
    [10]Holmes M.Steel Frames with Brickwork and Concrete Infillings[J].Proc.,Instn.Civ.Engrs.,1961,19(8):473-478.
    [11]Koing G.The State of the Art in Earthquake EngineeringResearch[J].Experimental and Numerical Methods inEarthquake Engineering,Edited by J.Donea and P.M.Jones,1991.
    [12]Thiruvengadam V.On the Natural Frequencies of InfilledFrames[J].Earthquake Engineering and StructuralDynamics,1985(13).
    [13]姚谦峰,袁泉.小高层密肋壁板轻框结构模型振动台试验研究[J].建筑结构学报,2003,24(1):59-63.
    [14]Buonopance S G,White R N.Pseudo-dynamic testing ofmasonry infilled reinforced concrete frame[J].Journal ofstructural engineering,1999,125(6):578-589.
    [15]周安.结构拟动力试验的位移控制[J].合肥工业大学学报,2004,27(7):788-790.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心