淮北矿区岩浆岩侵入对煤储层微孔隙特征的影响
详细信息 本馆镜像全文    |  推荐本文 | | 获取馆网全文
摘要
以淮北矿区卧龙湖和海孜煤矿与岩床不同距离的23个煤样为研究对象,采用镜质组反射率(Ro)测定、低温液氮吸附试验、CO2吸附法测微孔(<2 nm)和扫描电镜的方法,对比分析了煤样的微孔(D-A微孔孔容、D-R微孔比表面积和微孔直径)、BET比表面积和与岩浆岩距离的关系。结果表明:靠近岩床,卧龙湖煤样Ro由2.74%增加到5.03%,海孜煤样Ro由2.30%增大到2.78%。卧龙湖岩床的接触变质作用使距离岩床0~5 m煤的微孔和BET比表面积变小,热演化作用增加了距离岩床5~60 m煤的微孔和BET比表面积。海孜巨厚岩床的热演化作用增加了距离岩床60~160 m煤的微孔和BET比表面积。扫描电镜发现热演化区煤样出现大量和岩浆活动有关的热解气孔。
The measured vitrinite reflectance(Ro),low-temperature nitrogen gas adsorption,carbon dioxide adsorption and scanning electron microscopy(SEM) analyses were carried out with 23 fresh samples from Wolonghu and Haizi Mine of Huaibei coalfield at various distances from two sills was done.Comparative analysis of the relation between micropores(micropore surface area,micropore volume and average micropore diameter) and the BET surface area of coal seams and the distance from sills was done.The results show that Ro levels of the Wolonghu coal increases from 2.74% to 5.03% near the sill.Approaching the intrusion,Ro levels of the Haizi coal increases from 2.30% to 2.78%.It is concluded that the contact-metamorphism of the sill in the Wolonghu Mine decreases the micropores and the BET surface area of coal(0~5 m from sill),while the thermal evolution of sill increases it of coal(5~60 m from sill),and the thermal evolution of sill in the Haizi Mine increases it of coal(60~160 m from sill).The scanning electron microscopy found massive devolatilization vacuoles of coal in the thermal evolution zone.
引文
[1]陈萍,唐修义.低温氮吸附法与煤中微孔隙特征的研究[J].煤炭学报,2001,26(6):552-556.Chen Ping,Tang Xiuyi.Low-temperature nitrogen adsorption methodand the micropore characteristics of coal[J].Journal of China CoalSociety,2001,26(6):552-556.
    [2]Close J C.Natural fracture in coal in hydrocarbons from coal[M].Law B E,Rice D D,eds.AAPG,1993:119-132.
    [3]ХодотВВ.煤与瓦斯突出[M].宋世钊,王佑安,译.北京:中国工业出版社,1966:27-30.
    [4]傅雪海,秦勇.多相介质煤层气储层渗透率预测理论与方法[M].徐州:中国矿业大学出版社,2003:19-31.
    [5]吴俊,金奎励,童有德,等.煤孔隙理论及在瓦斯突出和抽放中的应用[J].煤炭学报,1991,16(3):86-95.Wu Jun,Jin Kuili,Tong Youde,et al.Application of pore theory incoal and gas outburst and drainage[J].Journal of China Coal Socie-ty,1991,16(3):86-95.
    [6]张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40-43.Zhang Hui.Genetical type of proes in coal and its research signifi-cance[J].Journal of China Coal Society,2001,26(1):40-43.
    [7]姚艳斌,刘大锰,黄文辉,等.两淮煤田煤储层孔-裂隙系统与煤层气产出性能研究[J].煤炭学报,2006,31(2):163-168.Yao Yanbin,Liu Dameng,Huang Wenhui,et al.Research on thepore-fractures system properties of coalbed methane reservoirs andrecovery in Huainan and Huaibei coal-fields[J].Journal of ChinaCoal Society,2006,31(2):163-168.
    [8]姚艳斌,刘大锰.华北重点矿区煤储层吸附特征及其影响因素[J].中国矿业大学学报,2007,36(3):308-314.Yao Yanbin,Liu Dameng.Adsorption characteristics of coal reser-voirs in North China and its influencing factor[J].Journal of ChinaUniversity of Mining&Technology,2007,36(3):308-314.
    [9]Clarkson C R,Bustin R M.The effect of pore structure and gas pres-sure upon the transport properties of coal:a laboratory and modelingstudy.1.Isotherms and pore volume distributions[J].Fuel,1999,78(11):1333-1344.
    [10]Mastalerz M,Drobniak A,Schimmelmann A.Changes in opticalproperties,chemistry,and micropore and mesopore characteristicsof bituminous coal at the contact with dikes in the Illinois Basin[J].International Journal of Coal Geology,2009,77(3/4):310-319.
    [11]Jiang Jingyu,Cheng Yuanping,Wang Lei,et al.Petrographic andgeochemical effects of sill intrusions on coal and their implicationsfor gas outbursts in the Wolonghu Mine,Huaibei coalfield,China[J].International Journal of Coal Geology,2011,88(1):55-66.
    [12]Saghafi A,Pinetown K L,Groble P G,et al.CO2 storage potential ofSouth African coals and gas entrapment enhancement due to igne-ous intrusions[J].International Journal of Coal Geology,2008,73:74-87.
    [13]Yao Yanbin,Liu Dameng,Huang Wenhui.Influences of igneous in-trusions on coal rank,coal quality and adsorption capacity inHongyang,Handan and Huaibei coalfields,North China[J].Inter-national Journal of Coal Geology,2011,88(2/3):135-146.
    [14]徐永忠,崔若飞,潘冬明,等.煤田采区火成岩分布地震反演技术的应用研究[J].中国矿业大学学报,2006,35(2):265-268.Xu Yongzhong,Cui Ruofei,Pan Dongming,et al.Application ofseismic inversion based on model for igneous distributing incoalfields[J].Journal of China University of Mining&Technology,2006,35(2):265-268.
    [15]刘金华,杨少春,陈宁宁,等.火成岩油气储层中构造裂缝的微构造曲率预测法[J].中国矿业大学学报,2009,38(6):815-819.Liu Jinhua,Yang Shaochun,Chen Ningning,et al.Forecastingmethod of tectoclase in the igneous reservoirs using a curvature ofthe microtectonics[J].Journal of China University of Mining&Technology,2009,38(6):815-819.
    [16]Wang Liang,Cheng Yuanping,Li Fengrong,et al.Fracture evolu-tion and pressure relief gas drainage from distant protected coalseams under an extremely thick key stratum[J].Mining Science&Technology,2008,18(2):182-186.
    [17]Stewart A K,Massey M,Padgett P L,et al.Influence of basic intru-sion on the vitrinite reflectance and chemistry of the Springfield(No.5)coal,Harrisburg,Illinois[J].International Journal of CoalGeology,2005,63(1/2):58-67.
    [18]史小卫,张玉贵,张子敏.毛郢孜煤矿煤与瓦斯突出的构造控制分析[J].煤炭科学技术,2007,35(2):55-61.Shi Xiaowei,Zhang Yugui,Zhang Ziming.Structure control analysison coal and gas outburst in Maoyingzi Mine[J].Coal Science andTechnology,2007,35(2):55-61.
    [19]韩树棻.两淮地区成煤地质条件及成煤预测[M].北京:地质出版社,1990:8-10.
    [20]Langmuir I.The adsorption of gases on plane surfaces of glass,micaand platinum[J].Journal of American Chemical Society,1918,40(9):1361-1403.

版权所有:© 2023 中国地质图书馆 中国地质调查局地学文献中心